• 제목/요약/키워드: CFD model validation

검색결과 138건 처리시간 0.019초

Validation of a CFD model for hydraulic seals

  • Roy, Vincent Le;Guibault, Francois;Vu, Thi C.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.400-408
    • /
    • 2009
  • Optimization of seal geometries can reduce significantly the energetic losses in a hydraulic seal [1], especially for high head runner turbine. In the optimization process, a reliable prediction of the losses is needed and CFD is often used. This paper presents numerical experiments to determine an adequate CFD model for straight, labyrinth and stepped hydraulic seals used in Francis runners. The computation is performed with a finite volume commercial CFD code with a RANS low Reynolds turbulence model. As numerical computations in small radial clearances of hydraulic seals are not often encountered in the literature, the numerical results are validated with experimental data on straight seals and labyrinth seals. As the validation is satisfactory enough, geometrical optimization of hydraulic seals using CFD will be studied in future works.

CANDU6 감속재 온도분포 계산을 위한 CFD 해석모델의 타당성 검토 (Validation of a CFD Analysis Model for the Calculation of CANDU6 Moderator Temperature Distribution)

  • 윤철;이보욱;민병주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.499-504
    • /
    • 2001
  • A validation of a 3D CFD model for predicting local subcooling of moderator in the vicinity of calandria tubes in a CANDU reactor is performed. The small scale moderator experiments performed at Sheridan Park Experimental Laboratory(SPEL) in Ontario, Canada[1] is used for the validation. Also a comparison is made between previous CFD analyses based on 2DMOTH and PHOENICS, and the current model analysis for the same SPEL experiment. For the current model, a set of grid structures for the same geometry as the experimental test section is generated and the momentum, heat and continuity equations are solved by CFX-4.3, a CFD code developed by AEA technology. The matrix of calandria tubes is simplified by the porous media approach. The standard $k-\varepsilon$ turbulence model associated with logarithmic wall treatment and SIMPLEC algorithm on the body fitted grid are used and buoyancy effects are accounted for by the Boussinesq approximation. For the test conditions simulated in this study, the flow pattern identified is a buoyancy-dominated flow, which is generated by the interaction between the dominant buoyancy force by heating and inertial momentum forces by the inlet jets. As a result, the current CFD moderator analysis model predicts the moderator temperature reasonably, and the maximum error against the experimental data is kept at less than $2.0^{\circ}C$ over the whole domain. The simulated velocity field matches with the visualization of SPEL experiments quite well.

  • PDF

선박설계를 위한 계산유체역학의 활용 (The Application of CFD for Ship Design)

  • 김우전;반석호
    • 한국전산유체공학회지
    • /
    • 제8권2호
    • /
    • pp.42-48
    • /
    • 2003
  • The issues associated with the application of CFD for ship design are addressed. Doubtlessly at the moment, CFD tools are very useful in evaluating hull forms prior to traditional towing tank tests. However, time-consuming pre-processing is an obstacle in the daily application of CFD tools to improve hull forms. The accuracy of computational modeling without sacrificing the usability of CFD system is also to be assessed. The wave generation is still predicted by using potential panel methods, while velocity profiles entering into propeller plane is solved using turbulent flow solvers. The choice of turbulence model is a key to predict nominal wake distribution within acceptable accuracy. The experimental data for CFD validation are invaluable to improve physical and numerical modeling. Other applications of CFD for ship design than hull form improvement are also given. It is certain that CFD can be a cost-effective tool for the design of new and better ships.

선박설계를 위한 계산유체역학의 활용에 대하여 (The Application of CED for Ship Design)

  • 김우전
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.5-8
    • /
    • 2002
  • The issues associated with the application of CFD for ship design are addressed. It is quite certain that the CFD tools are very useful in evaluating hull forms a prior to traditional towing tank tests. However, the time-consuming pre-processing is an obstacle in the daily application of CFD tools to improve hull forms. The accuracy of computational modeling without sacrificing the usability of CFD system is also to be assessed. The wave generation is still predicted by using potential panel methods, while velocity profiles entering into propeller plane is solved using turbulent flow solvers. The choice of turbulence model is a key to predict nominal wake distribution within acceptable accuracy. The experimental data for CFD validation are invaluable to improve physical and numerical modeling. Other applications of CFD for ship design than hull form improvement are also given. It is certain that CFD can be a cost-effective tool for the design of new and better ships.

  • PDF

CFD 검증용 데이터베이스 구축을 위한 손상 선박의 횡동요 감쇠 운동에 대한 실험적 연구 (Experimental Study on Free Roll Decay Motions of a Damaged Ship for CFD Validation Database)

  • 이성균;유지명;이현호;이신형;이기표
    • 대한조선학회논문집
    • /
    • 제49권1호
    • /
    • pp.52-59
    • /
    • 2012
  • Among many factors to be considered for higher safety level requirements, the hull stability in intact and damaged conditions in seaways is of utmost importance. Since the assessment of a damaged ship is complicated due to the highly non-linear behavior, it is widely acknowledged that computational fluid dynamics (CFD) methods are one of the most feasible approaches. Although many research activities are being reported on the damaged ship stability recently, most of them are not designed for validation of CFD studies. In this study, well-designed model tests were performed to build a CFD validation database, which is essential in developing better CFD methods for the damage stability assessment. The geometry of the damaged compartment and test conditions were determined based on preliminary CFD simulations. Free roll decay tests in calm water with both intact and damaged ships were performed and the roll motion characteristics were compared. The damaged ship showed a larger roll damping coefficient and more rapid decrease of roll amplitude than the intact ship. The primary reason of these efforts can be explained by the movement of the flooded water.

Development and validation of diffusion based CFD model for modelling of hydrogen and carbon monoxide recombination in passive autocatalytic recombiner

  • Bhuvaneshwar Gera;Vishnu Verma;Jayanta Chattopadhyay
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3194-3201
    • /
    • 2023
  • In water-cooled power reactor, hydrogen is generated in case of steam zirconium reaction during severe accident condition and later on in addition to hydrogen; CO is also generated during molten corium concrete interaction after reactor pressure vessel failure. Passive Autocatalytic Recombiners (PARs) are provided in the containment for hydrogen management. The performance of the PARs in presence of hydrogen and carbon monoxide along with air has been evaluated. Depending on the conditions, CO may either react with oxygen to form carbon dioxide (CO2) or act as catalyst poison, reducing the catalyst activity and hence the hydrogen conversion efficiency. CFD analysis has been carried out to determine the effect of CO on catalyst plate temperature for 2 & 4% v/v H2 and 1-4% v/v CO with air at the recombiner inlet for a reported experiment. The results of CFD simulations have been compared with the reported experimental data for the model validation. The reaction at the recombiner plate is modelled based on diffusion theory. The developed CFD model has been used to predict the maximum catalyst temperature and outlet species concentration for different inlet velocity and temperatures of the mixture gas. The obtained results were used to fit a correlation for obtaining removal rate of carbon monoxide inside PAR as a function of inlet velocity and concentrations.

KRISO 138K LNG 운반선 모형 주위의 국부 유동장 계측 (Measurement of flow around KRISO 138K LNG Carrier Model)

  • 반석호;윤현세;이영연;박일룡;이춘주;김우전
    • 대한조선학회논문집
    • /
    • 제40권2호
    • /
    • pp.1-10
    • /
    • 2003
  • It is important to understand the flow characteristics such as wave and wake development around a ship for the design of the hull forms with better resistance and propulsive performance. The experimental results explicating the local flow characteristics are also invaluable for validation of the physical and numerical modeling of CFD codes, which are recently gaining acknowledgements as efficient tools for hull form evaluation This paper describes velocity and wave profiles measured in the towing tank for the KRISO 138K LNG Carrier (KLNG) model with propeller and rudder. The results contained in this paper can provide the valuable information on the effect of propeller and rudder on stern flow characteristics of the modern commercial hull form, furthermore, the present experimental data will provide important database for CFO validation.

보행자 레벨의 풍환경 예측 시 Canopy Model을 적용한 CFD 시뮬레이션 타당성 검증 (Validation of applying Canopy model to predict wind environment of pedestrian level by CFD simulation)

  • 정수현;홍인표;송두삼
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.345-353
    • /
    • 2012
  • Recently rapid urbanization facilitates development of high-rise building complex including apartment and office building in urban area. Many problems related with high-rise building are reported. Especially, unpleasant strong winds in pedestrian area are frequently encountered around the high-rise building. CFD simulation methods are used to analyze the wind environment of pedestrian level in high-rise building block. However the results show differences between CFD and measurement. The reason for the difference is that conventional CFD simulation couldn't consider the effect of trees, shrubs and plants which affect the wind environment. Canopy model is a solution to solve the limitation of CFD analysis. In this paper, the canopy model to predict wind environment of pedestrian level by CFD simulation will be proposed and the validity will be analyzed by comparison of measurement and CFD prediction.

  • PDF

저압에서의 과냉각 비등 현상에 대한 CFD의 유효성 검토 (CFD validation for subcooled boiling under low pressure)

  • 최용석;김유택;임태우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권4호
    • /
    • pp.275-281
    • /
    • 2016
  • 본 연구에서는 전산유체역학(CFD)을 이용하여 저압에서의 과냉각 비등 현상에 대한 수치해석적 연구를 수행하였다. 과냉각 비등 현상을 시뮬레이션하기 위해서 벽비등 모델을 사용하였으며, 벽비등 모델은 기포 이탈 직경, 핵 사이트 밀도 그리고 기포 이탈 빈도로 구성된 하위모델을 필요로 한다. 전산유체역학 코드 CFX는 실험 자료에 근거한 기본 모델을 제공한다. 하지만 이러한 모델은 대부분 고압조건에서 개발되었기 때문에 저압조건에서는 잘 맞지 않는 것으로 보인다. 따라서 본 연구에서는 저압조건에서 과냉각 비등 현상에 대해서 CFD의 유효성을 검토하였다. 수치해석적 결과는 기존의 실험 결과와 비교하였다. 수치해석은 질량유속 $250{\sim}750kg/m^2s$, 열유속 $0.37{\sim}0.77MW/m^2$ 그리고 출구압력 0.11 MPa범위에서 수행되었다. 저압조건에서 개발된 상관식을 적용함으로써 수치해석의 정확성을 높일 수 있었다.