• Title/Summary/Keyword: CFD++

Search Result 5,763, Processing Time 0.033 seconds

Flow control of air blowing and vacuuming module using Coanda effect (코안다 효과를 이용한 에어 블로어와 흡입구의 유동 제어)

  • Jeong, Wootae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.115-121
    • /
    • 2017
  • The efficiency of railway track cleaning vehicle for eliminating fine particulate matter (PM10 and PM2.5) in a subway tunnel depends strongly on the structure of the air blowing and suction system installed under the train. To increase the efficiency of underbody suction system, this paper proposes a novel method to use the Coanda effect for the air blower and dust suction module. In particular, through Computational Fluid Dynamics (CFD) analysis, the flow control device induced by the Coanda effect enables an increase in the overall flow velocity and to stabilize the flow distribution of the suction module at a control angle of $90^{\circ}$. In addition, the flow velocity drop at the edge of the air knife-type blower can be improved by placing small inserts at the edge of the blower. Those 4 modular designs of the dust suction system can help remove the dust accumulated on the track and tunnel by optimizing the blowing and suction flows.

Design of Supersonic Wind Tunnel for Analysis of Flow over a Backward Facing Step with Slot Injection (슬롯 분사가 있는 후향계단 유동장 분석을 위한 초음속풍동 설계)

  • Kim, Ick-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.363-367
    • /
    • 2016
  • A test section of a supersonic wind tunnel was designed for the analysis of flow characteristics over a backward-facing step with Mach 1.0 slot injection in a supersonic flow of Mach 2.5. The cavity flow of a high-speed vehicle is very complex at supersonic speed, so it is necessary to do experiments using supersonic wind tunnels to verify numerical analysis methods. The previous 2D symmetrical nozzle was replaced with an asymmetrical nozzle. The inviscid nozzle contour was designed using Method of Characteristics (MOC), and the boundary layer thickness correction was reflected by experimental data from the wind tunnel. The results were compared with a CFD analysis. The PID control system was changed to be based on the change of tank pressure. This improved the control efficiency, and the run times of supersonic flow increased by about 1 second. The flow characteristics over a backward facing step with slot injection were visualized by a Schlieren device. This equipment will be used for an experimental study of the film cooling effectiveness over a cavity with various velocities, mass flows, and temperatures.

The Passenger Evacuation Simulation Using Fluent and EXODUS (Fluent와 EXODUS를 이용한 승객피난 시뮬레이션)

  • Jang, Yong-Jun;Lee, Chang-Hyun;Park, Won-Hee;Jung, Woo-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.95-100
    • /
    • 2008
  • The simulation analysis of fire-driven flow and passenger evacuation in Daegu subway station, Chung-Ang, have been performed. The first location of outbreak of fire is inside passenger car in the third basement in Chung-Aug station, The smoke flow in the second and third basement has been analyzed using FLUENT 6.2. The CO (carbon monoxide) and temperature distribution in the train units and station platform have been obtained and transferred to input data for evacuation simulation. The highest temperature in the train units was 1500k. For the simulation of passenger evacuation, EXODUS has been used for whole basements (level 1${\sim}$level 3) in the station. Total number of people was assumed to be one thousand and 640 were placed inside train and 360 were placed outside train. In evacuation simulation, an average of 135 passengers were killed and an average time to evacuate takes 10min 19sec. The main evacuation routes used by passengers were investigated and the cause of death was identified by evacuation simulation.

A Study on the Ventilation Schemes for Gas Leakage and Dispersion Controlling at the Backfilled Working Face in Large-Opening Underground Mine (대단면 지하광산 갱도내 뒷채움 작업장 가스유출 및 확산제어 통기방안 연구)

  • Nguyen, Vanduc;Lee, Changwoo
    • Tunnel and Underground Space
    • /
    • v.28 no.4
    • /
    • pp.372-386
    • /
    • 2018
  • The air quality near the backfilled site area is significantly deteriorated during and even after the curing period of the backfill materials. Hazardous gases such as NH3 and CO2 may leak out prolongedly from the mined-out sites backfilled with the composite carbonate-based material; leakage can be observed at the underground working sites as well as on the surface. At operating mines, underground gas leakage will severely aggravate the workplace environment. The ventilation schemes should supply sufficient air to dilute the contaminated air, and control the toxic gas leakage and dispersion. This study shows the applicability of pressurization ventilation system to control gas leakage and dispersion at the backfilled underground mine site.

Evaluation of Implementation Potential of Offshore Wind Farm Capacity in Korea Using National Wind Map and Commercial Wind Farm Design Tool (국가바람지도와 상용 단지설계 프로그램을 활용한 국내 해상풍력단지 공급가능 잠재량 산정)

  • Song, Yuan;Kim, Chanjong;Paek, Insu;Kim, Hyungoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.4
    • /
    • pp.21-29
    • /
    • 2016
  • Commercial wind farm design tools and the national wind map are used to determine the implementation potential of offshore wind power in Korea in this study. For this, the territorial waters of Korea were divided into nine analysis regions and a commercial CFD code was used to obtain wind resource maps at 100m A.S.L. which is the hub height of a 5MW wind turbine used in this study. With the wind resource obtained, factors including water depth, distance from substations, minimum and maximum capacity of a wind farm, distance between turbines and wind farms were considered to determine wind power potential. Also, the conservation areas, military zones, ports, fishing grounds, etc. were considered and excluded. As the result, a total capacity of 6,720 MW was found to be the implementation potential and this corresponds to $3.38MW/km^2$ in API. Also if the distance from the substation is not considered, the potential increased to be 10,040 MW. This offshore wind farm potential is considered enough to satisfy the target of wind farm capacities in the 7th national plan for electricity demand and supply.

A Numerical Performance Study on Rudder with Wavy Configuration at High Angles of Attack (Wavy 형상 적용에 따른 대 각도에서의 러더 성능에 대한 수치해석 연구)

  • Tae, Hyun June;Shin, Young Jin;Kim, Beom Jun;Kim, Moon-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.18-25
    • /
    • 2017
  • This study deals with numerically comparing performance according to rudder shape called 'Twisted rudder and Wavy twisted rudder'. In comparison with conventional rudder, rudder with wavy shape has showed a better performance at high angles of attack($30^{\circ}{\sim}40^{\circ}$) due to delaying stall. But most of study concerned with wavy shape had been performed in uniform flow condition. In order to identify the characteristics behind a rotating propeller, the present study numerically carries out an analysis of resistance and self-propulsion for KCS with twisted rudder and wavy twisted rudder. The turbulence closure model, Realizable $k-{\epsilon}$, is employed to simulate three-dimensional unsteady incompressible viscous turbulent and separation flow around the rudder. The simulation of self-propulsion analysis is performed in two step, because of finding optimization case of wavy shape. The first step presents there are little difference between twisted rudder and case of H_0.65 wavy twisted rudder in delivered power. So two kind of rudders are employed from first step to compare lift-to-drag ratio and torque at high angles of attack. Consequently, the wavy twisted rudder is presented as a possible way of delaying stall, allowing a rudder to have a better performance containing superior lift-to-drag ratio and torque than twisted rudder at high angles of attack. Also, as we indicate the flow visualization, check the quantity of separation flow around the rudder.

Development of LDV(Laser Doppler Velocimetry) for Measuring Three Dimensional Hull Wake of Ship Model in Large Cavitation Tunnel (대형 캐비테이션 터널 내 선박 모형의 3차원 선체 반류 계측을 위한 레이저 유속계 개발)

  • Paik, Bu-Geun;Ahn, Jong-Woo;Seol, Han-Shin;Park, Young-Ha;Kim, Ki-Sup;Cheon, Ho-Geun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.6
    • /
    • pp.515-521
    • /
    • 2017
  • Large Cavitation Tunnel (LCT) of KRISO enables us to conduct cavitation tests of the propeller attached to a ship model. As the ship model tests are done at rather high Reynolds number of 107~108, flow measurement system such as pitot tube cannot be employed because of structural safety problems in its system and difficulties in installing it within the test section. Thus, KRISO has developed new 3-D LDV system used in large test section of LCT. There are several difficulties in using 3-D LDV, which did not allow efficient operation of it. The first trouble was the calibration using the conventional pin hole. To make the focus with same laser-beam waists at the wanted position, the high spatial resolution CCD is utilized in the calibration procedure for 3-D LDV. The off-axis configuration provides two velocity components in the horizontal plane and on-axis configuration gives third velocity component in the vertical plane. The horizontal velocity components are also obtained in the coincidence mode, which prevents any misleading results in the off-axis configuration. The nominal wake of Aframax tanker model is measured by the developed 3-D LDV system. The measured hull wake showed good agreement with that obtained by CFD calculation.

An Estimation on Indoor Thermal Environment by Pressurized Plenum Under Floor Air Conditioning System in Heating (난방시 가압식 바닥취출 공조방식의 실내온열환경 평가)

  • Choi, Eun-Hun;Lee, Yong-Ho;Kwon, Young-Cheol;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.92-99
    • /
    • 2010
  • The purpose of this study is to apply pressurized plenum under floor air conditioning system to office areas to understand characteristics of indoor thermal environment based on forms of diffusers. For doing this, the author conducted experiment of module measurement, and based on the results, analyzed indoor temperature distribution and velocity distribution based on direction of diffusion by using Computational Fluid Dynamics(CFD), and estimated the Predicted Mean Vote(PMV) of residents based on forms of diffusers to present the optimal air conditioning of the pressurized plenum under floor air conditioning system in heating. The results of this study are as follows. First, as for forms of diffusers, distributed diffusers rather than conical and grill diffusers were favorable in maintaining $24^{\circ}C$, the established temperature in heating, were active in velocity flowing, and were wide in a radius of diffusion. Second, as for position of pressurizing, the difference between upper and lower temperature was wider in center, lateral, and dispersed pressurizing (in order). As for velocity distribution, the velocity was more increased in lateral, center, and dispersed pressurizing(in order), indicating that dispersed pressurizing maintained uniform thermal environment. Third, as for diffusion direction, mixed direction showed less difference between upper and lower temperature and the difference in velocity between center and lateral part was 0.01m/1, indicating that it maintained uniform thermal environment. Fourth, as for the PMV of residents based on the forms of diffusers, the dispersed type showed(+) values above (0) when applied variably based on the position of diffuser, presenting thermal feeling of "being comfortable" to residents.

Study of Stirling Engine Receiver for Solar Thermal Power (태양열 발전용 스터링엔진 흡수기 특성연구)

  • Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.227-232
    • /
    • 2008
  • Stirling engine for solar thermal power is an essential part of Dish-Stirling system which generates electricity by using direct normal irradiation and will go into commercialization in near future. For the Stirling engine used in this study is Solo 161 model the capacity of which is 10 kWe and was already used for the Dish-Stirling system of KIER in Jinhae. The receiver of Stirling engine absorbes concentrated solar radiation and transfer it to working fluid of Hydrogen. The working condition of striling engine is high temperature and high pressure to make high efficiency. Therefore the receiver should stand against high temperature of above 800 $^{\circ}C$ and high pressure of max. 150 bar with good performance of heat transfer. The receiver is composed of 78 Inconel tubes of 1/8" with thickness of 0.71 mm and two reserviors which is connected with two cylinders. In order to know the charaterristics of heat transfer of Stirling engine receiver, simulation on the heat transfer of the receiver of Solo 161 is conducted by using CFD code of Fluent. The heat flux on the receiver surface has a shape of Gaussian distribution so, it is necessary to simulate a whole receiver. However, It is difficult and time consuming to simulate the whole receiver that one tube with different heat flux conditions are considered in this study. From the simulation results, heat transfer charateristics of receiver are observed and tube wall and fluid temperature and heat transfer coefficient are obtained and compared with the calculated results from Dittus-Boelter's correlation.

  • PDF

Diffusion Characteristics of Ecklonia cava Spores around Marine Forest Reefs (해중림초 주변의 감태 포자확산 특성)

  • Kim, Yong-Kwan;Lee, Jin-Yeong;Kwak, Ihn-Sil;Kim, Jong-Kyu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.93-102
    • /
    • 2020
  • This study investigated the dif usion characteristics of Ecklonia cava spores around marine forest reefs. For this purpose, a numerical analysis was conducted using field observations in the target area and an EFDC model. Based on the results of field observations and the EFDC model, Flow-3D was performed on three types of marine forest reefs, mamely triangular pyramid reef, double-dome reef, and ribbed reef, to monitor the movement direction and maximum movement distance for E. cava spores. As a result, the equilaterally triangular pyramid reef and double-domed reef were found to have a maximum settlement of spores of 10 m in the northwestern direction and 6 m in the western direction. The ribbed reef had a maximum settlement of spores at 4m. These results show that consideration of the diffusion characteristics of E. cava spores when the seaweeds are installed can increase the effectiveness of the algae as substrate of adhesion.