• Title/Summary/Keyword: CFC

Search Result 271, Processing Time 0.025 seconds

An investigation on the system characteristics of a refrigerator with alternative refrigerants (대체냉매를 이용한 가정용 냉장고의 시스템 특성에 관한 연구)

  • 신진규;문춘근;윤정인
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.753-762
    • /
    • 1998
  • A domestic refrigerator is composed of many components such as a compressor, evaporator, capillary tube, and the cabinet which plays a great role on the cycle performance, even if it is not the basic component part in the cycle. Recently, the restriction policy on the energy-saving and environmentally friendly refrigerator is reinforced in our nation as well as developed countries. Therefore, in this paper, cycle simulations and experiments were carried out ito understand the characteristics of the cycle performance using CFC 12, HFC 134a, and HC 600a and to know how changes in UA(overall heat transfer coefficients$\times$ heat transfer area) of evaporator, the position displacement of compressor, and the rpm of fan in the freezing room which has influence on the cycle performance. The result shows that the quantitative values of simulation and experiment are not coincident, but their trend is similar. When HFC 134a and HC 600a were used without the change of design in refrigerator used CFC 12, the performance of system in HC 600a is 30% lower, and the case of HFC 134a is 10% lower than that of CFC 12 on freezing temperature.

  • PDF

Performance analysis of a hermetic reciprocating compressor using the alternative refrigerants, HFC134a and HC600a (대체냉매(HFC134a, HC600a)용 밀폐형 왕복동 압축기의 성능해석에 관한 연구)

  • Kim, Jeong-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.966-979
    • /
    • 1998
  • Thermodynamic and dynamic analysis has been conducted to investigate performance variations induced by substitution of alternative refrigerants, HFC134a or HC600a for CFC12 in hermetic reciprocating compressors. For the thermodynamic analysis, mass and energy conservation laws are applied to the cylinder volume and Helmholtz resonator modeling method is adopted to describe gas pulsations at suction and discharge system. The modeling of the dynamics of the compressor mechanism has been performed with lumped mass method to analyse the bearing loads and friction losses at each bearing. To verify the correctness of this analysis, results of the performance simulation have been compared to those of calorimetric measurrements of compressor operating with CFC12. Analysis of the various losses, noise and reliability as well as performance has been conducted to present the design guideline for the compressor development with alternative refrigerants. It is found that compressors with alternative refrigerants, HFC 134a or HC600a give better COPs than those with CFC12 under the same operating conditions and especially, compressors with HC600a show better reliability and noise characteristics also.

Separation of EPA and DHA from Fatty Acid of Fish Oil by Urea Adduct Formation Using Supercritical Carbon Dioxide Solvent (초임계 이산화탄소 용매하의 요소부가법에 의한 어유지방산으로부터 EPA와 DHA의 분리)

  • Kim, Jae-Duck;Lim, Jong-Sung;Lee, Youn-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.41-48
    • /
    • 1997
  • Separation of EPA and DHA from fish oil fatty acid ethyl ester (FAFE) by urea adductive crystallization method was carried out in the supercritical carbon dioxide (SC $CO_2$) as a solvent. Our results showed that SC $CO_2$ is a good candidate as a solvent in the urea adductive crystallization to separate FAFE by the number of unsaturated bonds. Compared to the separation process using methanol. SC $CO_2$ yielded better performance in the overall selectivity of EPA and DHA. The effect of process variables on separation of EPA and DHA was discussed in detailed. A hybrid technology of SC $CO_2$ fractionation and urea adductive crystallization with SC $CO_2$ was conformed as a viable process to separate and concentrate EPA and DHA from fish oil.

Study on the Cleaning Screen Printing using Alternative Cleaning Solvent of 1,1,1-TCE, CFC-113 (1,1,1-TCE, CFC-113 대체세정제를 이용한 스크린인쇄 세정연구)

  • Lee, Ki-Chang;Yoon, Cheol-Hun;Hwang, Sung-Kwy;Oh, Se-Young;Lee, Seok-Woo;Ryu, Jung-Wok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.115-122
    • /
    • 1997
  • The field of printing use to pressurization ink using screen gassamer that is called screen printing. Existing cleaning solvent using screen printing are the organic solvents including aromatic compounds carried with poisonous and stench. Besides, cleaning method of current screen printing are for the most part mixed cleaning method of dipping and polish. Using 1,1,1-TCE, CFC-113 alternative system cleaning solvent be substituted for existing cleaning solvent against screen printing ink measured the cleaning efficiency according to gravimetric analysis method and property change of gassamer according to Image Analyzer. Also, Cleaning process system carry with excellent cleaning efficiency studied which was proposed new cleaning process including ultrasonic and vibration cleaning process be substituted for existing mixed cleaning method of dipping and polish.

A Study on the condensate Retention at Horizontal Integral-Fin tubes (낮은 핀을 가진 수평관의 응축액 억류에 관한 연구)

  • 한규일;조동현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.151-165
    • /
    • 1996
  • Relation between condensate retention and heat transfer performance is studied for condensation of CFC-11 on horizontal integral-fin tubes. Eight tubes with trapezoidally shaped integral fin density from 738fpm to 1654fpm and 10, 30 grooves are tested. The liquid retention angles are measured by the height gauge, and each tube is tested under static(non-condensing) condition (CFC-11, water) and under dynamic(condensing) condition (CFC-11). The analytical model predicts the amount of liquid retention on a horizontal integral-fin tubes within+10 percent over most of the data. Average retention angle increases as both surface tension-to-density ratio($\sigma/\rho$) and fin density(fpm) increase, The tube having a fin density of 1299~1654fpm has the best heat transfer performance. The amount of surface flooding must keep below of 40 percent for best heat transfer performance at condensation. The tube having low number of fin density must be used for fluids having high values of $\sigma/\rho$(water, (TEX)$NH_3$, ect.) and the tube having high number of fin density must be used for the fluid having low values of $\sigma/\rho$(R-11, R-22, etc.)

  • PDF

A Study on Applicability of Hydrofluoroethers as CFC-Alternative Cleaning Agents (CFC 대체 산업세정제로의 HFEs의 적용가능성 연구)

  • Min, Hye-Jin;Shin, Jin-Ho;Bae, Jae-Heum;Kim, Hong-Gon;Lee, Hyun-Joo
    • Clean Technology
    • /
    • v.14 no.3
    • /
    • pp.184-192
    • /
    • 2008
  • Fluoride-type cleaning agents such as 2,2,2-trifluoroethanol (TFEA) and hydrofluoroethers (HFEs) do not destroy ozone in the stratosphere and have low global warming potential compared to hydrofluorocarbons(HFCs) and hydrochlorofluorocarbons (HCFCs). Especially, HFEs which have no flash point are paid attention as next generation type of cleaning agents for chlorofluorocarbons (CFCs) since they are safe in handling and have excellent penetration ability compared to hydrocarbon cleaning agents with low flash point. Here, the physical properties and cleaning abilities of fluoride-type cleaning agents such as TFEA, HFE-7100, HFE-7200, HFE-476mec, HFE-449mec-f, AE-3000 and AE-3100E and silicide-type cleaning agents such as trifluoroetoxytrimethylsilane (TFES) and hexamethyldisilazane (HMDS) were measured and compared with those of ozone destruction substances such as CFC-113 and 1,1,1-trichloroethane. They were also compared with toxic methylene chloride (MC) and isopropyl alcohol (IPA) which are now being used as an alternative cleaning agents. As a result, TFEA and HFEs had lower cleaning ability for removal of various soils compared to chloride-type cleaning agents, but they showed excellent cleaning ability fur fluoride-type soils. TFES and HMDS also showed excellent cleaning ability for silicide-type soils.

  • PDF