• Title/Summary/Keyword: CF4 gas

Search Result 234, Processing Time 0.024 seconds

Study on the Gas Separation of Carbon Molecular Sieve (CMS) Membrane for Recovering the Perfluorocompound Gases from the Electronics Industry (전자산업 배출 불화가스 회수를 위한 탄소분자체 분리막의 기체분리 연구)

  • Jeong, Su Jung;Lim, Joo Hwan;Han, Sang Hoon;Koh, Hyung Chul;Ha, Seong Yong
    • Membrane Journal
    • /
    • v.26 no.3
    • /
    • pp.220-228
    • /
    • 2016
  • Carbon molecular sieve (CMS) hollow fiber membranes were prepared by carbonizing a polyimide precursor manufactured by non-solvent induced phase separation process. Gas separation performance of CMS hollow fiber membrane was investigated on the effect of three carbonization conditions. CMS membrane with the highest gas separation performance was obtained at the pyrolysis temperature of $250-450^{\circ}C$: $N_2$, $SF_6$, and $CF_4$ permeance were 20, 0.32, 0.48 GPU, respectively, and $N_2/SF_6$ and $N_2/CF_4$ selectivities were 62 and 42, respectively. In the $SF_6/CF_4/N_2$ mixture gas test, when the stage cut was 0.2, the recovery ratio of $SF_6$ and $CF_4$ was over 99% and 98%. $SF_6$ concentration ratio was 4.5 times higher than the $SF_6$ concentration at the feed side. From the results, it was concluded that CMS membrane was one of the promising membranes for recovery Perfluorocompound gases process.

Reduction of Tetrafluoromethane using a Waterjet Gliding Arc Plasma (워터젯 글라이딩 아크 플라즈마를 이용한 사불화탄소 저감)

  • Lee, Chae Hong;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.485-490
    • /
    • 2011
  • Tetrafluoromethane($CF_4$) has been used as etching and chamber cleaning gases for semiconductor manufacturing processes. These gases need to be removed efficiently because of their strong absorption of infrared radiation and long atmospheric lifetime which causes the global warming effect. We have developed a waterjet gliding arc plasma system in which plasma is combined with waterjet and investigated optimum operating conditions for efficient $CF_4$ destruction through enlarging discharge region and producing large amount of OH radicals. The operating conditions are waterjet flow rate, initial $CF_4$ concentration, total gas flow rate, specific energy input. Through the parametric studies, the highest $CF_4$ destruction of 97% was achieved at 2.2% $CF_4$, 7.2 kJ/L SEI, 9 L/min total gas flow rate and 25.5 mL/min waterjet flow rate.

Etching Mechanism of $YMnO_3$ Thin Films in High Density $CF_4$/Ar Plasma ($CF_4$/Ar 가스 플라즈마를 이용한 $YMnO_3$ 박막의 식각 반응연구)

  • 김동표;김창일;이철인
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.12
    • /
    • pp.959-964
    • /
    • 2001
  • We investigated the etching characteristics of YMnO$_3$ thin films in high-density plasma etching system. In this study, YMnO$_3$ thin films were etched with CF$_4$/Ar gas chemistries in inductively coupled plasma(ICP). Etch rates of YMnO$_3$ increased up to 20% CF$_4$ in CF$_4$/(CF$_4$+Ar), but decreased with furthermore increasing CF$_4$ in CF$_4$/(CF$_4$+Ar). In optical emission spectroscopy (OES) analysis, F radical and Ar* ions in plasma at various gas chemistries decreased with increasing CF$_4$ content. Chemical states of YMnO$_3$ films exposed in plasma were investigated with x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). There is a chemical reaction between metal (Y, Mn) and F and metal-fluorides were removed effectively by Ar ion sputtering. YF$_{x}$, MnF$_{x}$ such as YF, YF$_2$, YF$_3$ and MnF$_3$ were detected using SIMS analysis. The etch slope is about 65$^{\circ}$ and cleasn surface. surface of the etched YMnO$_3$ thin films was investigated with X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The etch profile was also investigated by scanning electron microscopy (SEM).EM).

  • PDF

The Patterning of Polyimide Thin Films for the Additive $CF_4$ gas ($CF_4$ 첨가에 따른 polyimide 박막의 패터닝 연구)

  • Kang, Pil-Seung;Kim, Chang-Il;Kim, Sang-Gi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.209-212
    • /
    • 2001
  • Polyimide(PI) films have been considered as the interlayer dielectric materials due to low dielectric constant, low water absorption, high gap-fill and planarization capability. The PI mm Was etched with using inductively coupled plasma (ICP). The etching characteristics such as etch rate and selectivity were evaluated to gas mixing ratio. High etch rate was $8300{\AA}/min$ and vertical profile was approximately acquired $90^{\circ}$ at $CF_{4}/(CF_{4}+O_{2})$ of 0.2. The selectivies of polyimide to PR and $SiO_{2}$ were 1.2, 5.9, respectively. The etching profiles of PI films with an aluminum pattern were measured by a scanning electron microscope (SEM). The chemical states on the PI film surface were investigated by x-ray photoelectron spectroscopy (XPS). Radical densities of oxygen and fluorine in different gas mixing ratio of $O_{2}/CF_{4}$ were investigated by optical emission spectrometer (OES).

  • PDF

Effect of Reaction Gases on PFCs Treatment Using Arc Plasma Process (아크 플라즈마를 이용한 과불화합물 처리공정에서 반응가스에 의한 효과)

  • Park, Hyun-Woo;Choi, Sooseok;Park, Dong-Wha
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • The treatment of chemically stable perflourocompounds (PFCs) requires a large amount of energy. An energy efficient arc plasma system has been developed to overcome such disadvantage. $CF_4$, $SF_6$ and $NF_3$ were injected into the plasma torch directly, and net plasma power was estimated from the measurement of thermal efficiency of the system. Effects of net plasma power, waste gas flow rate and additive gases on the destruction and removal efficiency (DRE) of PFCs were examined. The calculation of thermodynamic equilibrium composition was also conducted to compare with experimental results. The average thermal efficiency was ranged from 60 to 66% with increasing waste gas flow rate, while DRE of PFCs was decreased with increasing gas flow rate. On the other hand, DRE of each PFCs was increased with the increasing input power. Maximum DREs of $CF_4$, $SF_6$ and $NF_3$ were 4%, 15% and 90%, respectively, without reaction gas at the fixed input power and waste gas flow rate of 3 kW and 70 L/min. A rapid increase of DRE was found using hydrogen or oxygen additional gases. Hydrogen was more effective than oxygen to decompose PFCs and to control by-products. The major by-product in the arc plasma process with hydrogen was hydrofluoric acid that is easy to be removed by a wet scrubber. DREs of $CF_4$, $SF_6$ and $NF_3$ were 25%, 39% and 99%, respectively, using hydrogen additional gas at the waste gas flow rate of 100 L/min and the input power of 3 kW.

Ionization and Attachment Coefficients in CF4, CH4, Ar Mixtures Gas (CF4, CH4, Ar 혼합기체의 전리와 부착계수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.1
    • /
    • pp.13-17
    • /
    • 2012
  • Ionization and Attachment Coefficients in pure $CH_4$, $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CH_4$, $CF_4$ and Ar, were used. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4$-Ar mixtures shows the Maxwellian distribution for energy. That is, f(${\varepsilon}$) has the symmetrical shape whose axis of symmetry is a most probably energy. The proposed theoretical simulation techniques in this work will be useful to predict the fundamental process of charged particles and the breakdown properties of gas mixtures.

The Development of Scrubber for F-gas Reduction from Electronic Industry Using Pressure Swing Adsorption Method and Porous Media Combustion Method (압력순환흡착법과 다공성 매체 연소법을 이용한 전자산업 불화가스 저감 스크러버 개발)

  • Chung, Jong Kook;Lee, Ki Yong;Lee, Sang Gon;Lee, Eun Mi;Mo, Sun Hee;Lee, Dae Keun;Kim, Seung Gon
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.181-187
    • /
    • 2017
  • The perfluorocompounds (PFCs) emitted from the semiconductor and display manufacture is treated by abatement systems which use various technologies, such as combustion, thermal, plasma, catalyst. However, it is required that the system should overcome their drawbacks with excess energy consumption and low removal efficiency. The new technology using combination of pressure swing adsorption and excess enthalpy combustion for the reduction of PFCs emissions were developed and analyzed its characteristics. PFCs concentration ratio and PFCs loss factor were calculated from measuring concentration of PFCs at the calculated by comparing concentration of PFCs at the combustor's inlet and outlet. There were performance evaluations with various gas flow for comparing energy consumption and removal efficiency with existing equipments. The concentration ratio and the loss factor of PFCs were 1.65, 8.2%, respectively, when the total gas flow of the pressure swing absorption (PSA) inlet was 204 liter per minute (LPM) and $CF_4$ concentration was 1412 ppm. In comparison with existing system at constant condition, $CF_4$ removal efficiency for a porous media combustion (PMC) showed the improvement more than 16% and the consumed energy was also reduced up to approximately 41%. Then, the total gas flow introduced into PMC and $CF_4$ concentration were 91-LPM and 2335 ppm, respectively, and the destruction and removal efficiency of $CF_4$ was about 96% at 19-LPM $CH_4$, and 40-LPM $O_2$.

AC Breakdown Voltage Characteristics of SF6/CF4 in Uniform field (평등전계에서 SF6/CF4 혼합가스의 AC절연내력 특성)

  • Hwang, Chung-Ho;Park, Woo-Shin;Kim, Nam-Ryul;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.381-387
    • /
    • 2007
  • The excellent dielectric properties of $SF_6$(sulfur hexafluoride) have lead to its wide range of application in the field of high voltage insulation. Because there has been some recent concern regarding the environmental impacts of $SF_6$ binary gas mixtures, with $SF_6$ as the main component, have been the subject of active research. Scientists have long been interested in the possible use of gaseous fluorocarbons, including $CF_4$ (Carton Tetrafluoride), in high voltage applications due to their inert character and high dielectric strength. This paper presents experimental results concerning the AC breakdown characteristics lot various mixtures of $SF_6/CF_4$ in a test chamber and 25.8 kV GIS (Gas Insulation Switchgear) at practical pressures (0.1-04 MPa) and gap lengths (0.5 mm, 1 mm) in a test chamber. In the result, it was observed that an increase in the dielectric strength is attained through the addition of $SF_6$ to $CF_4$. It is possible to make an environment friendly gas insulation material while maintaining the dielectric strength by combing $SF_6$ and $CF_4$ which generates a lower level of the "global warming" effect.

Breakdown Characteristics of $SF_6/CF_4$ Mixtures Under AC and Standard Lightning Impulse Voltages in Uniform Field (평등전계에서 AC 및 표준 뇌 임펄스 전압의 $SF_6/CF_4$ 혼합 가스 절연 파괴 특성)

  • Sung, Heo-Gyung;Park, Shin-Woo;Hwang, Chung-Ho;Kim, Nam-Ryul;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.227-228
    • /
    • 2007
  • Although many studies have been carried out about binary gas mixtures with $SF_6$, few studies were presented about breakdown characteristics of $SF_6/CF_4$ mixtures. At present study the breakdown characteristics of SFJCF4 mixtures in uniform field was performed. The experiments were carried out under AC and standard lightning impulse (SLI) voltages. The sphere-sphere electrode whose gap distance was 1 mm was used in a test chamber. $SF_6/CF_4$ mixtures contained from 0 to 100% $SF_6$ and the experimental gas pressure ranged from 0.1 to 0.4 MPa. The results show that addition of $SF_6$ to $CF_4$ increase AC and SLI breakdown voltages. Under AC voltages the breakdown voltages of each mixture were linearly increased according to the quantity of $SF_6$. However under SLI voltages the breakdown voltages of each mixture were similar.

  • PDF

A Study on Etching Mechanism of (Ba,Sr)$TiO_3$ in Ar/$CF_4$ High Density Plasma (Ar/$CF_4$ 고밀도 플라즈마에서(Ba,Sr)$TiO_3$ 박막의 식각 메카니즘에 관한 연구)

  • Kim, Seung-Bum;Kim, Chang-Il
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1550-1552
    • /
    • 1999
  • In this study, (Ba,Sr)$TiO_3$ thin films were etched with a magnetically enhanced inductively coupled plasma (MEICP) as a function $CF_4$/Ar gas mixing ratio. Experimental was done by varying the etching parameters such as rf power, dc bias and chamber pressure. The maximum etch rate of the BST films was $1700{\AA}$/min under $CF_4/(CF_4+Ar)$ of 0.1, 600W/350V and 5 mTorr. The selectivity of BST to Pt and PR was 0.6, 0.7, respectively. X-ray photoelectron spectroscopy (XPS) studies shows that there are surface reaction between Ba, Sr, Ti and C, F radicals during the (Ba,Sr)$TiO_3$ etching. To analysis the composition of surface residue remaining after the etching, films etched with different $CF_4$/Ar gas mixing ratio were investigated using XPS.

  • PDF