• Title/Summary/Keyword: CENELEC

Search Result 24, Processing Time 0.015 seconds

스마트그리드 표준화 동향 및 성과 (ITU-T Focus Group on Smart Grid를 중심으로)

  • Kim, Hyeong-Su
    • Information and Communications Magazine
    • /
    • v.29 no.6
    • /
    • pp.47-52
    • /
    • 2012
  • 차세대 전력기술로 불리는 스마트그리드는 ICT와의 융합을 통해 전력을 효율적으로 운용함으로써, 에너지 소비를 줄여 탄소배출량을 줄이는 핵심 솔루션이자 Green by ICT의 대표적인 응용으로서, 글로벌 금융위기와 자원 전쟁에 대한 각국의 대응전략으로 채택되고 있다. 그러나 이와 같은 전세계적인 관심과 의욕적인 노력에도 불구하고, 전력과 정보통신의 컨버전스를 위한 표준의 부재라는 문제에 직면해 있다. [1] 이를 해결하기 위해 미국의 NIST와 유럽의 CEN/CENELEC/ETSI는 경쟁적으로 표준 개발에 전력을 다하고 있으며, 국제표준화기구인 IEC와 ITU 역시 스마트그리드 표준화에 역량을 집중하고 있는 실정이다. 본 고에서는 지금까지의 국내외 스마트그리드 국제표준화 기구의 동향과 더불어 최근 정보통신 입장에서의 스마트그리드 표준화를 진행하고 있는 ITU-T Focus Group on Smart Grid의 표준화 추진 현황을 살펴본다. ITU-T Focus Group on Smart Grid는 특히 한국의 제안으로 설립되고, 지속적이고 적극적인 참여와 주도로 한국의 스마트그리드 표준화 역량이 극적으로 발휘되고 있는 국제표준화 위원회이다.

A Study on Hazard Analysis and Risk Assessment of Railway Signal System Using FTA/ETA Method (FTA/ETA 기법을 이용한 철도신호시스템의 위험 분석 및 위험성 평가에 관한 연구)

  • 백영구;박영수;이재훈;이기서
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.473-480
    • /
    • 2002
  • In this paper, it was proposed that hazard analysis and risk assessment about railway signal systems using FTA(Fault Tree Analysis) and ETA(Event Tree Analysis) one of the reliability analysis methods executed and output value based on the hazard baseline of CENELEC and EC 61508 producted, and also the SIL(Safety Integrity Level)/THR(Tolerable Hazard Rate) about the system set. On the basis of this principle, more systematic standardizations are required to operate railway system and in the future, we hope that safety and reliability of signal equipment will be better improved.

  • PDF

A Study of SIL Allocation with a Multi-Phase Fuzzy Risk Graph Model (다단계 퍼지 리스크 그래프 모델을 적용한 SIL 할당에 관한 연구)

  • Yang, Heekap;Lee, Jongwoo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.170-186
    • /
    • 2016
  • This paper introduces a multi-phase fuzzy risk graph model, representing a method for determining for SIL values for railway industry systems. The purpose of this paper is to compensate for the shortcomings of qualitative determination, which are associated with input value ambiguity and the subjectivity problem of expert judgement. The multi-phase fuzzy risk graph model has two phases. The first involves the determination of the conventional risk graph input values of the consequence, exposure, avoidance and demand rates using fuzzy theory. For the first step of fuzzification this paper proposes detailed input parameters. The fuzzy inference and the defuzzification results from the first step will be utilized as input parameters for the second step of the fuzzy model. The second step is to determine the safety integrity level and tolerable hazard rate corresponding to be identified hazard in the railway industry. To validate the results of the proposed the multi-phase fuzzy risk graph, it is compared with the results of a safety analysis of a level crossing system in the CENELEC SC 9XA WG A0 report. This model will be adapted for determining safety requirements at the early concept design stages in the railway business.

A Study on SIL Allocation for Signaling Function with Fuzzy Risk Graph (퍼지 리스크 그래프를 적용한 신호 기능 SIL 할당에 관한 연구)

  • Yang, Heekap;Lee, Jongwoo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.145-158
    • /
    • 2016
  • This paper introduces a risk graph which is one method for determining the SIL as a measure of the effectiveness of signaling system. The purpose of this research is to make up for the weakness of the qualitative determination, which has input value ambiguity and a boundary problem in the SIL range. The fuzzy input valuable consists of consequence, exposure, avoidance and demand rate. The fuzzy inference produces forty eight fuzzy rule by adapting the calibrated risk graph in the IEC 61511. The Max-min composition is utilized for the fuzzy inference. The result of the fuzzy inference is the fuzzy value. Therefore, using the de-fuzzification method, the result should be converted to a crisp value that can be utilized for real projects. Ultimately, the safety requirement for hazard is identified by proposing a SIL result with a tolerable hazard rate. For the validation the results of the proposed method, the fuzzy risk graph model is compared with the safety analysis of the signaling system in CENELEC SC 9XA WG A10 report.