• 제목/요약/키워드: CDE

검색결과 1,612건 처리시간 0.025초

Cutter-workpiece engagement determination for general milling using triangle mesh modeling

  • Gong, Xun;Feng, Hsi-Yung
    • Journal of Computational Design and Engineering
    • /
    • 제3권2호
    • /
    • pp.151-160
    • /
    • 2016
  • Cutter-workpiece engagement (CWE) is the instantaneous contact geometry between the cutter and the in-process workpiece during machining. It plays an important role in machining process simulation and directly affects the calculation of the predicted cutting forces and torques. The difficulty and challenge of CWE determination come from the complexity due to the changing geometry of in-process workpiece and the curved tool path of cutter movement, especially for multi-axis milling. This paper presents a new method to determine the CWE for general milling processes. To fulfill the requirement of generality, which means for any cutter type, any in-process workpiece shape, and any tool path even with self-intersections, all the associated geometries are to be modeled as triangle meshes. The involved triangle-to-triangle intersection calculations are carried out by an effective method in order to realize the multiple subtraction Boolean operations between the tool and the workpiece mesh models and to determine the CWE. The presented method has been validated by a series of case studies of increasing machining complexity to demonstrate its applicability to general milling processes.

3D scanning based mold correction for planar and cylindrical parts in aluminum die casting

  • Seno, Takashi;Ohtake, Yutaka;Kikuchi, Yuji;Saito, Noriaki;Suzuki, Hiromasa;Nagai, Yukie
    • Journal of Computational Design and Engineering
    • /
    • 제2권2호
    • /
    • pp.96-104
    • /
    • 2015
  • Aluminum die casting is an important manufacturing process for mechanical components. Die casting is known to be more accurate than other types of casting; however, post-machining is usually necessary to achieve the required accuracy. The goal of this investigation is to develop machining- free aluminum die casting. Improvement of the accuracy of planar and cylindrical parts is expected by correcting metal molds. In the proposed method, the shape of cast aluminum made with the initial metal molds is measured by 3D scanning. The 3D scan data includes information about deformations that occur during casting. Therefore, it is possible to estimate the deformation and correction amounts by comparing 3D scan data with product computer-aided design (CAD) data. We corrected planar and cylindrical parts of the CAD data for the mold. In addition, we corrected the planar part of the metal mold using the corrected mold data. The effectiveness of the proposed method is demonstrated by evaluating the accuracy improvement of the cast aluminum made with the corrected mold.

A comprehensive approach for managing feasible solutions in production planning by an interacting network of Zero-Suppressed Binary Decision Diagrams

  • Takahashi, Keita;Onosato, Masahiko;Tanaka, Fumiki
    • Journal of Computational Design and Engineering
    • /
    • 제2권2호
    • /
    • pp.105-112
    • /
    • 2015
  • Product Lifecycle Management (PLM) ranges from design concepts of products to disposal. In this paper, we focus on the production planning phase in PLM, which is related to process planning and production scheduling and so on. In this study, key decisions for the creation of production plans are defined as production-planning attributes. Production-planning attributes correlate complexly in production-planning problems. Traditionally, the production-planning problem splits sub-problems based on experiences, because of the complexity. In addition, the orders in which to solve each sub-problem are determined by priorities between sub-problems. However, such approaches make solution space over-restricted and make it difficult to find a better solution. We have proposed a representation of combinations of alternatives in production-planning attributes by using Zero-Suppressed Binary Decision Diagrams. The ZDD represents only feasible combinations of alternatives that satisfy constraints in the production planning. Moreover, we have developed a solution search method that solves production-planning problems with ZDDs. In this paper, we propose an approach for managing solution candidates by ZDDs' network for addressing larger production-planning problems. The network can be created by linkages of ZDDs that express constraints in individual sub-problems and between sub-problems. The benefit of this approach is that it represents solution space, satisfying whole constraints in the production planning. This case study shows that the validity of the proposed approach.

Minimum time path planning of robotic manipulator in drilling/spot welding tasks

  • Zhang, Qiang;Zhao, Ming-Yong
    • Journal of Computational Design and Engineering
    • /
    • 제3권2호
    • /
    • pp.132-139
    • /
    • 2016
  • In this paper, a minimum time path planning strategy is proposed for multi points manufacturing problems in drilling/spot welding tasks. By optimizing the travelling schedule of the set points and the detailed transfer path between points, the minimum time manufacturing task is realized under fully utilizing the dynamic performance of robotic manipulator. According to the start-stop movement in drilling/spot welding task, the path planning problem can be converted into a traveling salesman problem (TSP) and a series of point to point minimum time transfer path planning problems. Cubic Hermite interpolation polynomial is used to parameterize the transfer path and then the path parameters are optimized to obtain minimum point to point transfer time. A new TSP with minimum time index is constructed by using point-point transfer time as the TSP parameter. The classical genetic algorithm (GA) is applied to obtain the optimal travelling schedule. Several minimum time drilling tasks of a 3-DOF robotic manipulator are used as examples to demonstrate the effectiveness of the proposed approach.

An adaptive nonlocal filtering for low-dose CT in both image and projection domains

  • Wang, Yingmei;Fu, Shujun;Li, Wanlong;Zhang, Caiming
    • Journal of Computational Design and Engineering
    • /
    • 제2권2호
    • /
    • pp.113-118
    • /
    • 2015
  • An important problem in low-dose CT is the image quality degradation caused by photon starvation. There are a lot of algorithms in sinogram domain or image domain to solve this problem. In view of strong self-similarity contained in the special sinusoid-like strip data in the sinogram space, we propose a novel non-local filtering, whose average weights are related to both the image FBP (filtered backprojection) reconstructed from restored sinogram data and the image directly FBP reconstructed from noisy sinogram data. In the process of sinogram restoration, we apply a non-local method with smoothness parameters adjusted adaptively to the variance of noisy sinogram data, which makes the method much effective for noise reduction in sinogram domain. Simulation experiments show that our proposed method by filtering in both image and projection domains has a better performance in noise reduction and details preservation in reconstructed images.

Specification of VRML in Color Rapid Prototyping

  • Ming, Ling Wai;Gibson, Ian
    • International Journal of CAD/CAM
    • /
    • 제1권1호
    • /
    • pp.1-9
    • /
    • 2002
  • The STL or Stereolithography format, established by 3D systems, gathers the geometric data of the model in a number of triangular surfaces. It can be in ASCII or binary format, and is a de facto standard in the Rapid Prototyping (RP) world. RP has developed greatly over the last ten years. In particular, improvement in materials has meant greater part accuracy and strength, which in turn has increased the range of functional applications. Future applications of RP will focus on rapid tooling and direct manufacturing. Direct manufacturing in particular may see much benefit from the incorporation of color into models. For color RP, besides designing new hardware to add color into the prototypes, it is necessary to redefine the CAD software for adding and accurately positioning color onto the model. STL cannot effectively store this kind of information. Among the existing data file formats, VRML is an acceptable one that is complimentary to existing RP processes. This paper acts as a review to discuss several methods of using VRML for coloring model data. This paper will also discuss the problems occurred in coloring the layer contours of the RP model.

Sketch-based Solid Prototype Modeling System with Dual Data Structure of Point-set Surfaces and Voxels

  • Takeuchi, Ryota;Watanabe, Taichi;Yamakawa, Soji
    • International Journal of CAD/CAM
    • /
    • 제11권1호
    • /
    • pp.18-26
    • /
    • 2011
  • This paper proposes a new solid-shape modeling system based on a lusterware-image illustration. The proposed method reconstructs a three dimensional solid shape from a set of rough sketches that are typically drawn in the early stages of the design process. The sketches do not have to be strictly accurate, and this tolerance to the roughness of the input sketches is one of the major advantages of the proposed method. The proposed system creates an initial shape based on the silhouette of the input lusterware-images. Then the user can edit the initial shape with intuitive cutting and dishing-up operations, which are based on sketching user interface. To achieve the goal, the system retains the geometric model with two representations: a point-set data and a volume data. This dual data structure allows the program to create an initial shape from the input images with little computational cost, and the user can apply cutting and dishing-up operations without substantially increasing computational and memory requirements. In this research, we have tested the proposed system by reconstructing solid models of some mechanical parts from rough sketches. The experimental results indicate that the proposed method is useful for the prototyping of a solid shape.

  • PDF

Optimal Ball-end and Fillet-end Mills Selection for 3-Axis Finish Machining of Point-based Surface

  • Kayal, Prasenjit
    • International Journal of CAD/CAM
    • /
    • 제7권1호
    • /
    • pp.51-60
    • /
    • 2007
  • This paper presents an algorithm of optimal cutting tool selection for machining of the point-based surface that is defined by a set of surface points rather than parametric polynomial surface equations. As the ball-end and fillet-end mills are generally used for finish machining in a 3-axis computer numerical control machine, the algorithm is applicable for both cutters. The optimum tool would be as large as possible in terms of the cutter radius and/or corner radius which maximise (s) the material removal rate (i.e., minimise (s) the machining time), while still being able to machine the entire point-based surface without gouging any surface point. The gouging are two types: local and global. In this paper, the distance between the cutter bottom and surface points is used to check the local gouging whereas the shortest distance between the surface points and cutter axis is effectively used to check the global gouging. The selection procedure begins with a cutter from the tool library, which has the largest cutter radius and/or corner radius, and then adequacy of the point-density is checked to limit the accuracy of the cutter selection for the point-based surface within tolerance prior to the gouge checking. When the entire surface is gouge-free with a chosen cutting tool then the tool becomes the optimum cutting tool for a list of cutters available in the tool library. The effectiveness of the algorithm is demonstrated considering two examples.

The SIMP-SRV Method for Stiffness Topology Optimization of Continuum Structures

  • Zhou, Xiangyang;Chen, Liping;Huang, Zhengdong
    • International Journal of CAD/CAM
    • /
    • 제7권1호
    • /
    • pp.41-49
    • /
    • 2007
  • In density-based topology optimization, 0/1 solutions are sought. Discrete topological problems are often relaxed with continuous design variables so that they can be solved using continuous mathematical programming. Although the relaxed methods are practical, grey areas appear in the optimum topologies. SIMP (Solid Isotropic Microstructures with Penalization) employs penalty schemes to suppress the intermediate densities. SRV (the Sum of the Reciprocal Variables) drives the solution to a 0/1 layout with the SRV constraint. However, both methods cannot effectively remove all the grey areas. SRV has some numerical aspects. In this work, a new scheme SIMP-SRV is proposed by combining SIMP and SRV approaches, where SIMP is employed to generate an intermediate solution to initialize the design variables and SRV is then adopted to produce the final design. The new method turned out to be very effective in conjunction with the method of moving asymptotes (MMA) when using for the stiffness topology optimization of continuum structures for minimum compliance. The numerical examples show that the hybrid technique can effectively remove all grey areas and generate stiffer optimal designs characterized with a sharper boundary in contrast to SIMP and SRV.

$\beta$-Shape and $\beta$-Complex for the Structure Analysis of Molecules

  • Seo, Jeong-Yeon;Kim, Dong-Uk;Cho, Young-Song;Ryu, Joong-Hyun;Kim, Deok-Soo
    • International Journal of CAD/CAM
    • /
    • 제7권1호
    • /
    • pp.91-101
    • /
    • 2007
  • To understand the structure of molecules, various computational methodologies have been extensively investigated such as the Voronoi diagram of the centers of atoms in molecule and the power diagram for the weighted points where the weights are related to the radii of the atoms. For a more improved efficiency, constructs like an $\alpha$-shape or a weighted $\alpha$-shape have been developed and used frequently in a systematic analysis of the morphology of molecules. However, it has been recently shown that $\alpha$-shapes and weighted $\alpha$-shapes lack the fidelity to Euclidean distance for molecules with polysized spherical atoms. We present the theory as well as algorithms of $\beta$-shape and $\beta$-complex in $\mathbb{R}^3$ which reflects the size difference among atoms in their full Euclidean metric. We show that these new concepts are more natural for most applications and therefore will have a significant impact on applications based on particles, in particular in molecular biology. The theory will be equivalently useful for other application areas such as computer graphics, geometric modeling, chemistry, physics, and material science.