• Title/Summary/Keyword: CCTV image analysis

Search Result 80, Processing Time 0.02 seconds

Implementation of Image Security System for CCTV Using Analysis Technique of Color Informations (색 정보 분석 기법을 이용한 효율적인 CCTV 영상 보안 시스템의 구현)

  • Ryu, Su-Bong;Kang, Min-Sup
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.219-227
    • /
    • 2012
  • This paper describes the design and implementation of an efficient image security system for CCTV using the analysis technique of color informations. In conventional approaches, the compression and encryption techniques are mainly used for reducing the data size of the original images while the analysis technique of color information is first proposed, which eliminates the overlapping part of the original image data in our approach. In addition, security-enhanced CCTV image security system is presented using SSL/VPN tunneling technique. When we use the method proposed in this paper, an efficient image processing is enable for a mount of information, and also security problem is enhanced. Through the implementation results, the proposed method showed that the original image information are dramatically reduced.

CCTV Cooperation Authentication Model Using Block Chain (블록체인을 이용한 CCTV 협력 검증 모델)

  • Kwon, Yong-Been;An, Kyu-Hwang;Kwon, Hyeok-Dong;Seo, Hwa-Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.4
    • /
    • pp.462-469
    • /
    • 2019
  • According to the survey of Ministry of the Interior and Safety in Korea, The number of public and private CCTV reached over ten million and is still increasing. Also with improving Image Processing Technology, it is possible to obtain diverse information. Recently, various services using CCTV are being provided. Therefore it is necessary to ensure CCTV image integrity. However there is no system to prove events in film yet. In this paper, we suggest system model that can manage, use and authenticate CCTV. This model allows a CCTV film to be verified by other nearby CCTVs' data. This model ensures film's integrity by using blockchain. And also, It addresses privacy problem in CCTV and file size problem in blockchain by using not large film data but much smaller analyzed data.

Design and Implementation of Vehicle Route Tracking System using Hadoop-Based Bigdata Image Processing (하둡 기반 빅데이터 영상 처리를 통한 차량 이동경로 추적 시스템의 설계 및 구현)

  • Yang, Seongeun;Choi, Changyeol;Choi, Hwangkyu
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.447-454
    • /
    • 2013
  • As the surveillance CCTVs are increasing every year, big data image processing for the CCTV image data has become a hot issue. In this paper, we propose a Hadoop-based big data image processing technique to recognize a vehicle number from a large amount of automatic number plate images taken from CCTVs. We also implement the vehicle route tracking system that displays the moving path of the searched vehicle on Google Maps with the related information together. In order to evaluate the performance we compare and analysis the vehicle number recognition time for a lot of CCTV image data in Hadoop and the single PC environment.

A Study on the Skull Injury Using MDCT image and ADINA F.E.M. Program (MDCT 영상과 ADINA 유한요소해석 프로그램을 활용한 두개골 손상 평가에 관한 연구)

  • Kim, Eui Soo;Kim, Jong Hyuk;Yang, Kyung Moo
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • In this paper, the finite element analysis using ADINA has performed to investigate an accident that a man's head was damaged by the falling object. The simulation condition has defined by the point of forensic medicine view and the CCTV image analysis. From the CCTV image analysis, we expected that the sphere diameter of object is 15cm and object color is white. Assuming the falling mass is the ice mass, the results of the ADINA simulation show that a man's head can be broken by the falling ice mass.

A Study on Combine Artificial Intelligence Models for multi-classification for an Abnormal Behaviors in CCTV images (CCTV 영상의 이상행동 다중 분류를 위한 결합 인공지능 모델에 관한 연구)

  • Lee, Hongrae;Kim, Youngtae;Seo, Byung-suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.498-500
    • /
    • 2022
  • CCTV protects people and assets safely by identifying dangerous situations and responding promptly. However, it is difficult to continuously monitor the increasing number of CCTV images. For this reason, there is a need for a device that continuously monitors CCTV images and notifies when abnormal behavior occurs. Recently, many studies using artificial intelligence models for image data analysis have been conducted. This study simultaneously learns spatial and temporal characteristic information between image data to classify various abnormal behaviors that can be observed in CCTV images. As an artificial intelligence model used for learning, we propose a multi-classification deep learning model that combines an end-to-end 3D convolutional neural network(CNN) and ResNet.

  • PDF

Character Recognition of Low Resolution CCTV Images of Sewer Inspection (저해상도 하수관로 CCTV조사 영상의 문자인식)

  • Kim, Byeong-Cheol;Choi, Chang-Ho;Son, Byung-Jik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.58-65
    • /
    • 2016
  • Recent frequent occurrence of urban sinkhole serves as a momentum of the periodic inspection of sewer pipelines. Sewer inspection using a CCTV device needs a lot of time and efforts. Many of previous studies which reduce the laborious tasks are mainly interested in the developments of image processing S/W and inspection H/W. However there has been no attempt to find meaningful information from the existing CCTV images stored by the sewer maintenance manager. This study adopts a cross-correlation based image processing method and extracts location data of sewer inspection device from CCTV images. As a result of the analysis of time-location relation, it shows strong correlation between the device's stand times and the sewer damages. In case of using this method to investigate sewer inspection CCTV images, it will save the investigator's efforts and improve the sewer maintenance efficiency and reliability.

Adaptive Counting Line Detection for Traffic Analysis in CCTV Videos (CCTV영상 내 교통량 분석을 위한 적응적 계수선 검출 방법)

  • Jung, Hyeonseok;Lim, Seokjae;Lee, Ryong;Park, Minwoo;Lee, Sang-Hwan;Kim, Wonjun
    • Journal of Broadcast Engineering
    • /
    • v.25 no.1
    • /
    • pp.48-57
    • /
    • 2020
  • Recently, with the rapid development of image recognition technology, the demand for object analysis in road CCTV videos is increasing. In this paper, we propose a method that can adaptively find the counting line for traffic analysis in road CCTV videos. First, vehicles on the road are detected, and the corresponding positions of the detected vehicles are modeled as the two-dimensional pointwise Gaussian map. The paths of vehicles are estimated by accumulating pointwise Gaussian maps on successive video frames. Then, we apply clustering and linear regression to the accumulated Gaussian map to find the principal direction of the road, which is highly relevant to the counting line. Experimental results show that the proposed method for detecting the counting line is effective in various situations.

Machine Learning-Based Reversible Chaotic Masking Method for User Privacy Protection in CCTV Environment

  • Jimin Ha;Jungho Kang;Jong Hyuk Park
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.767-777
    • /
    • 2023
  • In modern society, user privacy is emerging as an important issue as closed-circuit television (CCTV) systems increase rapidly in various public and private spaces. If CCTV cameras monitor sensitive areas or personal spaces, they can infringe on personal privacy. Someone's behavior patterns, sensitive information, residence, etc. can be exposed, and if the image data collected from CCTV is not properly protected, there can be a risk of data leakage by hackers or illegal accessors. This paper presents an innovative approach to "machine learning based reversible chaotic masking method for user privacy protection in CCTV environment." The proposed method was developed to protect an individual's identity within CCTV images while maintaining the usefulness of the data for surveillance and analysis purposes. This method utilizes a two-step process for user privacy. First, machine learning models are trained to accurately detect and locate human subjects within the CCTV frame. This model is designed to identify individuals accurately and robustly by leveraging state-of-the-art object detection techniques. When an individual is detected, reversible chaos masking technology is applied. This masking technique uses chaos maps to create complex patterns to hide individual facial features and identifiable characteristics. Above all, the generated mask can be reversibly applied and removed, allowing authorized users to access the original unmasking image.

Escape Route Prediction and Tracking System using Artificial Intelligence (인공지능을 활용한 도주경로 예측 및 추적 시스템)

  • Yang, Bum-suk;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.225-227
    • /
    • 2022
  • Now In Seoul, about 75,000 CCTVs are installed in 25 district offices. Each ward office in Seoul has built a control center for CCTV control and is building information such as people, vehicle types, license plate recognition and color classification into big data through 24-hour artificial intelligence intelligent image analysis. Seoul Metropolitan Government has signed MOUs with the Ministry of Land, Infrastructure and Transport, the National Police Agency, the Fire Service, the Ministry of Justice, and the military base to enable rapid response to emergency/emergency situations. In other words, we are building a smart city that is safe and can prevent disasters by providing CCTV images of each ward office. In this paper, the CCTV image is designed to extract the characteristics of the vehicle and personnel when an incident occurs through artificial intelligence, and based on this, predict the escape route and enable continuous tracking. It is designed so that the AI automatically selects and displays the CCTV image of the route. It is designed to expand the smart city integration platform by providing image information and extracted information to the adjacent ward office when the escape route of a person or vehicle related to an incident is expected to an area other than the relevant jurisdiction. This paper will contribute as basic data to the development of smart city integrated platform research.

  • PDF

Escape Route Prediction and Tracking System using Artificial Intelligence (인공지능을 활용한 도주경로 예측 및 추적 시스템)

  • Yang, Bum-Suk;Park, Dea-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1130-1135
    • /
    • 2022
  • In Seoul, about 75,000 CCTVs are installed in 25 district offices. Each ward office has built a control center for CCTV control and is performing 24-hour CCTV video control for the safety of citizens. Seoul Metropolitan Government is building a smart city integrated platform that is safe for citizens by providing CCTV images of the ward office to enable rapid response to emergency/emergency situations by signing an MOU with related organizations. In this paper, when an incident occurs at the Seoul Metropolitan Government Office, the escape route is predicted by discriminating people and vehicles using the AI DNN-based Template Matching technology, MLP algorithm and CNN-based YOLO SPP DNN model for CCTV images. In addition, it is designed to automatically disseminate image information and situation information to adjacent ward offices when vehicles and people escape from the competent ward office. The escape route prediction and tracking system using artificial intelligence can expand the smart city integrated platform nationwide.