최근 이슈가 되고 있는 도심지 지반함몰로 인하여 주기적인 하수관로 조사의 필요성이 강조되고 있다. 일반적으로 수행되는 조사 방법 중 하나인 하수관로 CCTV조사는 상당한 시간과 노력이 소요된다. 기존 연구들은 주로 하수관로 조사에 소요되는 노력을 줄이기 위한 H/W 및 S/W의 개발에 관한 연구가 주를 이루고 있다. 그러나 기존 CCTV 탐사장치를 이용하여 관리담당자가 보관하고 있는 수많은 조사영상를 활용하기 위한 연구는 진행되지 않았다. 본 연구는 cross-correlation기법 기반의 이미지프로세싱 방법을 적용하여 CCTV 조사영상의 자막으로부터 장치의 위치정보를 추출하였다. CCTV 장치의 시간-거리 관계를 분석한 결과 탐사 장치가 정지시간과 하수관로의 손상 사이의 강한 상관관계를 확인하였다. 제안된 CCTV영상의 분석법을 활용하는 경우 CCTV조사 보고서 작성 및 관리에 소요되는 노력을 줄임으로써 하수관로 유지관리의 효율성과 신뢰도를 높일 수 있을 것으로 기대된다.
CCTV inspection method has been used in Korea for more than 20 years, but there is no proper assessment system for sewer failure severity that considers the domestic circumstances. This study classified the defects caused by the overburden load of reinforced concrete sewer pipes depending on severity and developed defect code by analyzing the domestic CCTV inspection videos. The defect score was assigned to each defect code, and it was classified into 5 grades for the decision-making of repair and rehabilitation. The result of this study is expected to be useful for domestic CCTV inspectors to assess the sewer condition and helpful for managers to make a decision of repair and rehabilitation.
Sewer condition assessment involves the determination of defective points and status of aged sewers by a CCTV inspection according to the standard manual. Therefore, it is important to establish a reliable and effective standard manual for identifying the sewer defect. In this study, analytic reviews of the CCTV inspection manuals of the UK, New Zealand, Canada and South Korea were performed in order to compare the defect codes and the protocols of condition assessment. Through this, we also established the standardized method for defect code and revised the calculation method of assigning the condition grade. Analyses of the types and frequencies of sewer defects that obtained by CCTV inspection of 7000 case results, showed that the joint defect and lateral defect were the most frequent defects that occurred in Korea. Some defect codes are found to be modified because those did not occur at all. This study includes a proposed new sewer defect codes based on sewer characteristics.
관로 내부를 조사하는 일반적인 방법은 CCTV 카메라를 장착한 원격 조정 기계를 사용하는 것이다. 그러나, 이 시스템은 관로의 상태에 따라서 정확한 관측이 어렵다. 기존의 CCTV 기기의 경우에 있어서 카메라가 파이프의 정면만을 향하기 때문에 관측 거리에 따라서 판독 결과가 다른 경우가 발생한다. 관측 정확도에 있어서도 작업자의 기술과 경험에 많은 영향을 받는다. 본 연구를 통하여 영상처리기법과 렌즈의 조합에 의한 새로운 시스템을 제안하였다. 영상취득 체계는 전면 영상과 함께 측면의 영상을 동시에 취득할 수 있도록 개발되었다. 측면에 대한 영상 전개 및 영상 결합을 위하여 적용된 영상처리 기법을 통하여 관로 내면에 대한 고해상도 영상 정보를 도출할 수 있었다.
도심 내 매설된 대다수의 하수관로는 노후가 심각하게 진행되어 파손의 가능성이 높다. 또한, 도시개발의 집중도가 높아 인구밀도나 통행량이 많으므로 하수관로가 붕괴되면 사회 경제적으로 막대한 피해를 입게 된다. 따라서 관로 파손에 의한 사고를 예방하기 위해 사전적인 유지관리가 필요하며, 한정된 재원의 효율적인 활용을 위해 파손의 가능성과 피해의 규모를 동시에 고려한 위험도 기반의 우선순위 결정방안이 제시되어야 한다. 본 연구에서는, 다양한 해외 연구사례를 검토하여 위험도 기반의 하수관로의 조사 우선순위 결정 방법을 도출하였고 도심지 배수분구에 적용 검토하였다. 우선, 서울시 하수관로 GIS DB를 통해 확보 가능한 영향인자를 도출하고, 각 영향인자들의 가중치, 구분항목, 영향점수를 결정하여 가중치 환산법으로 하수관로 파손결과를 산정하였다. 또한, 하수관로의 예상 내용연수 대비 사용연수를 계산하여 파손가능성을 도출하였으며, 내츄럴 브레이크 방법으로 파손결과와 파손가능성을 5등급으로 구분하였다. 위 방법을 서울시 내 위치한 소규모 배수분구에 적용하여 위험도 매트릭스와 위험도 등급을 도출하였으며, 그 결과 전체 대상의 26%가 위험도 4-5등급인 CCTV조사 우선대상으로 선정되었다. 따라서 위험도 기반의 CCTV 우선순위 결정방법을 활용하여 조사가 우선적으로 필요한 대상을 체계적으로 결정할 수 있을 것이다.
본 논문에서는 교육시설내의 CCTV 설치에 따른 대학생의 인식을 조사하고 이를 통해 교육시설내 CCTV에 대한 인지성, 기대성, 수용성 등 다양한 항목을 분석하고자 한다. 이를 위해 기존의 다양한 CCTV 관련 설문을 분석하고 이를 통해 적절한 설문문항 요소를 추출 개발하여 이를 통한 향후 인식변화에 대한 설문조사 연구를 완성하고자 한다. 설문 조사전에 4가지 가설을 세웠으며 설문 결과 첫째, CCTV 설치에 따라 범죄예방 기대효과가 높으며 둘째, 절도 등에 대한 두려움, 폭력범죄에 대한 두려움이 감소되고 셋째, CCTV설치에 따른 인권침해부분을 감수하겠다는 의견이 높게 나타났고 넷째, 계열별 CCTV 인지에 대한 차이가 있었다. 또한 설치장소에는 조사에서는 학생편의시설내 설치에 부정적 의견이 많았다. 본 연구로 단순한 설치여부에 대한 찬반을 조사하는 설문이 아니라 최종적으로 개발된 설문에 의해 교육시설 내 CCTV에 대한 설치효과에 대한 다양한 가설의 검증과 인식의 변화를 효과적으로 파악하는 설문양식을 새롭게 제시하게 되었다.
최근 생성형 Artificial Intelligence(이하 AI)와 인공지능에 대한 수요가 높아짐에 따라, 오남용에 대한 심각성이 대두되고 있다. 그러나, 이상행위 탐지를 극대화한 지능형 CCTV는 군과 경찰에서 범죄 예방에 큰 도움이 되고 있다. AI는 인간이 가르쳐준 대로 학습을 수행한 후, 자가 학습을 진행한다. AI는 학습된 결과에 따라 판단을 하기 때문에, 학습 시 특징을 명확하게 이해해야만 한다. 그러나, 인간이 판단하기에도 모호한 이상한 행위와 비정상 행위의 시각적 판단이 어려운 경우가 많다. 이것을 인공지능의 눈으로 학습하기란 매우 어렵고, 학습을 한 결과는 오탐, 미탐 그리고 과탐이 매우 많아진다. 이에 대해 본 논문에서는 AI의 이상한 행위와 비정상 행위의 학습을 명확하게 하기 위한 기준과 방법을 제시하고, 지능형 CCTV의 오탐, 미탐 그리고 과탐에 대한 판단 능력을 최대화 하기 위한 학습 방안을 제시하였다. 본 논문을 통해, 현재 활용 중인 지능형 CCTV의 인공지능 엔진 성능을 극대화가 가능하고, 오탐율과 미탐율의 최소화가 가능할 것으로 기대된다.
In this study, we present a sewer pipe inspection technique through a combination of active sonar technology and deep learning algorithms. It is difficult to inspect pipes containing water using conventional CCTV inspection methods, and there are various limitations, so a new approach is needed. In this paper, we introduce a inspection method using active sonar, and apply an auto encoder deep learning model to process sonar data to distinguish between normal and abnormal pipelines. This model underwent training on sonar data from a controlled environment under the assumption of normal pipeline conditions and utilized anomaly detection techniques to identify deviations from established standards. This approach presents a new perspective in pipeline inspection, promising to reduce the time and resources required for sewer system management and to enhance the reliability of pipeline inspections.
차량 하중은 교량의 열화를 일으키는 주된 원인 중 하나이다. 현재 WiM(Weigh-in-Motion)을 사용하여 통행 차량의 하중을 측정하고 있으나, WiM은 접촉식 센서로 설치 및 유지관리 비용이 큰 단점이 있다. 본 연구에서는 딥러닝과 CCTV 영상을 이용하여 비접촉식으로 교량 통행 차량 하중 이력을 추정하는 방법을 제안하였다. 제안된 방법은 물체 탐지 딥러닝 모델을 이용하여 통행 차종을 인식하고, 해당 차량의 하중을 국내 주요 차량 모델들의 공차중량에 근거하여 작성된 하중기반 7차종 분류표에 근거하여 추정한다. 물체 탐지 딥러닝 모델로는 Faster R-CNN 모델이 사용되었으며, Faster R-CNN 모델을 7차종 분류표에 따라 구축된 영상 학습데이터를 이용하여 학습시켰다. 학습된 딥러닝 모델의 성능은 교량 CCTV로 취득한 영상을 이용하여 검증하였다. 최종적으로 실제 교량 상부에 설치된 CCTV에서 취득한 영상을 이용하여 교량을 통행중인 차량 하중을 연속으로 추정함으로써 특정 시간동안 통행 차량의 하중 이력 그래프를 획득할 수 있음을 보였다.
Sewer joint-related defect is one of the most common domestic sewer defects along with the lateral pipe problem. However, there are currently no criteria that precisely assess the joint-related sewer defects. Therefore, this study examined the joint-related sewer defects found in domestic circumstances, classified them according to the suggested defect code, and presented the examples of defect pictures. Each defect code was organized as the process of out of pipeline alignment (OPA) which shows the progress in deterioration. Each defect was classified into 5 grades depending on appropriate repair and rehabilitation method. The result of this study is expected to be useful for domestic CCTV inspectors to assess the sewer condition and helpful for managers to make a decision of repair and rehabilitation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.