• Title/Summary/Keyword: CCPU

Search Result 19, Processing Time 0.018 seconds

A Study on the Configuration Method of CCPU for Lightning Surge in Underground Transmission System (지중송전계통의 방식층 보호장치 결선방식에 대한 뇌써어지 해석)

  • Kim, Dae-Kyeong;Jeong, Seong-Hwan;Lee, Jong-Bum;Kim, Jeom-Shik
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1018-1020
    • /
    • 1997
  • This paper is compared the configuration method of cable cover protection unit with respect to the lightning surge in 154kV underground transmission system. There are many methods of connecting CCPU, i.e, a conventional method, CIGRE method, inter-connection between sheath with grounding, and interconnection between sheath without grounding.

  • PDF

Analysis of Overvoltage and Reduction Methods of Insulation Joint Box in Underground Power Cable Systems (지중송전케이블계통에서 절연통의 과전압 해석 및 억제대책 검토)

  • Hong, Dong-Seok;Jeong, Chae-Gyun;Lee, Jong-Beom;Seo, Jae-Ho;Jo, Han-Gu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.2
    • /
    • pp.102-108
    • /
    • 2002
  • This paper describes the overvoltage analysis and reduction methods of insulation joint boxes in underground transmission power cables when direct lightning surge strikes to overhead transmission line. An actual 154kV combined transmission line with underground Power cables was modelled in ATPDraw for simulation. Simulations were performed to analyze the overvoltage between insulation joint boxes, sheath-to-ground voltage according to the distance between cable conductors, cable lengths, burying types, CCPU connection types. The most effective method to reduce the induced overvoltage of Insulation joint boxes was proposed. It is evaluated that the proposed reduction method riven from the detailed simulations can be effectively applied to the actual underground power cable systems.

Analysis of Induced Voltage on Sheath of Transmission Power Cable Connected with Surge Arrester (피뢰기 적용에 따른 지중송전케이블 시스 유기전압 해석)

  • Lee, Jun-Sung;Lee, Jong-Beom;Kim, Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1391-1393
    • /
    • 1999
  • This paper have analyzed sheath induced voltage in underground transmission cable system which will be operated with cable cover protection unit(CCPU). Simulation was carried out to analyze sheath induced voltage using on real cable system in the case with and without CCPU. Sheath induced voltage was also analyzed according to grounding method, fault resistance and fault angle. Simulation was performed using EMTP and ATP Draw, the simulation results represent whether the arrester is necessary or not in cable system.

  • PDF

A Study on Energy Characteristics in Transient States of OF Cable Systems (OF 케이블 계통에서 과도상태시 에너지 특성 검토)

  • Jung, Chae-Kyun;Lee, Jong-Beom;Kang, Ji-Won;Lee, Dong-Il;Seo, Je-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.11
    • /
    • pp.468-475
    • /
    • 2006
  • This paper reviews the energy characteristics of oil filled cables in transient state such as grounding fault and lightning surge. Artificial grounding fault test was firstly performed in 2003 for the analysis of arc voltage and breakdown energy according to the fault current. In this paper, energy of OF cable is variously analysed at joint box based on the actual test. Then more various conditions such as installation types, section lengths and CCPU(Cable Covering Protection Unit) connection types are applied for the simulation using EMTP when the single line to ground fault and direct lightning stroke are occurred on actual underground power cable systems and combined power cable systems, respectively. Finally, the energy by the length of crossbonded lead and grounding lead as well as fault lasting time is also calculated using EMTP simulation.

Assessment of Lightning Arrester Location in Combined Transmission Line Connected whth Overhead Line and Underground Cable (가공송전선로와 지중송전선로가 연계된 혼합송전선로에서 피뢰기 적정위치 검토 및 평가)

  • Ha, Che-Wung;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.443-445
    • /
    • 2000
  • This paper describes the assessment of proper location of lightning arrester in combined transmission line which is connected with overhead line and underground cable. The modeling for simulation is established using the actual system in ATP Draw and EMTP. Simulation is carried out to find out the best point to install the arrester in given the model system. And also voltage and current is analyzed on cable covering protection unit(CCPU). The simulation result demonstrated the best location of arrester in the given transmission line through the detailed analysis and its assessment.

  • PDF

Analysis of lightning overvoltage with unbalanced element in Underground Transmission Cable System (지중송전계통에서 불평형요소에 따른 뇌과전압 해석)

  • Kang, J.W.;Lee, D.I.;Kim, J.S.;Kim, Y.S.;Jung, C.K.;Lee, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.718-720
    • /
    • 2005
  • This paper analyses the transient phenomena against lightning surge on underground power cable systems. For analysis, several actual underground power cable systems are modeled using ATP. In lightning surge strokes, the various unbalanced conditions including the length of crossbonded lead, the breakdown of CCPU and distance unbalance are considered. This paper is expected to contribute the establishment of proper protection methods against transients on underground power cable systems.

  • PDF

Protection of Insulation Joint Box and Analysis of Overvoltage in Underground Power Cable Systems (지중송전케이블계통에서 절연통 보호대책 및 과전압 해석)

  • Hong, Dong-Suk;Jin, Hye-Young;Jung, Che-Kyun;Lee, Jong-Beom;Cho, Han-Ku
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.380-382
    • /
    • 2001
  • This paper describes the protection of insulation joint box in combined transmission line which is connected with the 154kV underground power cables. An actual power cable system was selected to establish modeling and to analyze. Modeling was established in EMTP and ATPDraw. Simulation was carried out according to the buried method of cable and connection method of CCPU. Results presented in this paper will be applied to another power cable systems.

  • PDF

Consideration of cable cross bonding and cable covering protection units (케이블 크로스본드 및 CCPU 적용검토)

  • Kim, Young;Kim, Jang-Woen;Seong, Jeong-Kue
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1646-1648
    • /
    • 1994
  • In the system of underground transmission line, the rate of electrical failure is very low, but, if once occuring, the failure evolves into a paralysis of the system, the time of restoration is very long, the damage from stopping of power supply is very serious, and the cost of restoration is very great. Because of these problems, you must try to protect the system and equipment from every electrical failure by contributing much carefulness to the design and operation of the underground system. This study summerizes the results of simmulation tests about the effect of installing this protection device on the insulated joint box and the terminal end box.

  • PDF

An Improvement of Digital Distance Relaying Algorithm on Underground Transmission Cables (지중송전케이블룡 디지털 거리계전 알고리즘 개선)

  • Ha, Che-Ung;Lee, Jong-Beom
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.12
    • /
    • pp.595-601
    • /
    • 2000
  • This paper describes the improvement method of distance relaying algorithm for the underground transmission cables. Distance relaying algorithms have been mainly developing to protect the overhead transmission lines than the underground cables. If the cable systems are directly protected using distance relaying algorithm developed for overhead line without any improvement, there will be really occurred many misoperation in cable systems, because the cable systems consist of the conductor, the sheath, several grounding method, cable cover protection units(CCPUs), and grounding wire. Accordingly, the complicated phenomena are occurred, if there is a fault in cable systems. Therefore, to develope a correct distance relaying algorithm, such cable characteristics should be taken into account. This paper presents the process to improve distance relaying algorithm which is now used. REal cable system was selected to establish modeling in EMTP and ATP Draw. It was discovered through the detailed simulation during the fault that the large error existed between impedance measured at the relay point and real impedance is due to the resistance of grounding wire in each grounding method. And also compensation factor obtained by the simulation is proposed in this paper. It is proved that the factor proposed can fairly improve the accuracy of impedance at the relay point. It is evaluated that the protective ability will be really much improved, if the algorithm proposed in this paper is applied for cable systems of utility.

  • PDF