• Title/Summary/Keyword: CCDC98

Search Result 3, Processing Time 0.015 seconds

Coiled-Coil Domain-Containing Protein 98 (CCDC98) Regulates Cyclin B1 Expression by Affecting WTAP Protein Stability (WTAP 단백질의 안정성을 통한 CCDC98 단백질의 cyclin B1 발현 조절)

  • Oh, Yun-Jung;Lee, Eun-Hee;Lee, Il-Kyu;Kim, Kyung-Soo;Kim, Hong-Tae
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1067-1075
    • /
    • 2011
  • Coiled-coil domain-containing protein 98 (CCDC98) plays a role in G2/M DNA damage checkpoint pathways by recruiting breast cancer 1 (BRCA1)-A complex to the DNA-damaged sites. However, the molecular mechanism of CCDC98 on the DNA damage-induced G2/M checkpoint pathways is unclear. In this study, we identifed Wilms tumor 1-associating protein (WTAP) as a novel CCDC98-binding protein, using tandem affinity purification. We confirmed the association between CCDC98 and WTAP using in vivo and in vitro binding assays. We demonstrated that CCDC98 regulates cyclin B1 expression by affecting WTAP protein stability. Based on these results, we suggest that CCDC98 may act as a novel cell cycle regulator by regulating the expression level of cyclin B1.

New Players in the BRCA1-mediated DNA Damage Responsive Pathway

  • Kim, Hongtae;Chen Junjie
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.457-461
    • /
    • 2008
  • DNA damage checkpoint is an important self-defense mechanism for the maintenance of genome stability. Defects in DNA damage signaling and repair lead to various disorders and increase tumor incidence in humans. In the past 10 years, we have identified many components involved in the DNA damage-signaling pathway, including the product of breast cancer susceptibility gene 1 (BRCA1). Mutations in BRCA1 are associated with increased risk of breast and ovarian cancers, highlighting the importance of this DNA damage-signaling pathway in tumor suppression. While it becomes clear that BRCA1 plays a crucial role in the DNA damage responsive pathway, exactly how BRCA1 receives DNA damage signals and exerts its checkpoint function has not been fully addressed. A series of recent studies reported the discovery of many novel components involved in DNA damage-signaling pathway. These newly identified checkpoint proteins, including RNF8, RAP80 and CCDC98, work in concern in recruiting BRCA1 to DNA damage sites and thus regulate BRCA1 function in G2/M checkpoint control. This review will summarize these recent findings and provide an updated view of the regulation of BRCA1 in response to DNA damage.

Crystal Structure, Fluorescence Property and Theoretical Calculation of the Zn(II) Complex with o-Aminobenzoic Acid and 1,10-Phenanthroline

  • Zhang, Zhongyu;Bi, Caifeng;Fan, Yuhua;Zhang, Xia;Zhang, Nan;Yan, Xingchen;Zuo, Jian
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1697-1702
    • /
    • 2014
  • A novel complex [$Zn(phen)(o-AB)_2$] [phen: 1,10-phenanthroline o-AB: o-aminobenzoic acid] was synthesized and characterized by elemental analysis and X-ray diffraction single-crystal analysis. The crystal crystallizes in monoclinic, space group P2(1)/c with $a=7.6397(6){\AA}$, $b=16.8761(18){\AA}$, $c=17.7713(19){\AA}$, ${\alpha}=90^{\circ}$, ${\beta}=98.9570(10)^{\circ}$, ${\gamma}=90^{\circ}$, $V=2.2633(4)nm^3$, Z = 4, F(000) = 1064, S = 1.058, $Dc=1.520g{\cdot}cm^{-3}$, $R_1=0.0412$, $wR_2=0.0948$, ${\mu}=1.128mm^{-1}$. The Zn(II) is six coordinated by two nitrogen and four oxygen atoms from the 1,10-phenanthroline and o-aminobenzoic acid to furnish a distorted octahedron geometry. The complex exhibits intense fluorescence at room temperature. Theoretical studies of the title complex were carried out by density functional theory (DFT) B3LYP method. CCDC: 898291.