• Title/Summary/Keyword: CCD area sensor

Search Result 30, Processing Time 0.029 seconds

A Defect Inspection Method in TFT-LCD Panel Using LS-SVM (LS-SVM을 이용한 TFT-LCD 패널 내의 결함 검사 방법)

  • Choi, Ho-Hyung;Lee, Gun-Hee;Kim, Ja-Geun;Joo, Young-Bok;Choi, Byung-Jae;Park, Kil-Houm;Yun, Byoung-Ju
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.852-859
    • /
    • 2009
  • Normally, to extract the defect in TFT-LCD inspection system, the image is obtained by using line scan camera or area scan camera which is achieved by CCD or CMOS sensor. Because of the limited dynamic range of CCD or CMOS sensor as well as the effect of the illumination, these images are frequently degraded and the important features are hard to decern by a human viewer. In order to overcome this problem, the feature vectors in the image are obtained by using the average intensity difference between defect and background based on the weber's law and the standard deviation of the background region. The defect detection method uses non-linear SVM (Supports Vector Machine) method using the extracted feature vectors. The experiment results show that the proposed method yields better performance of defect classification methods over conveniently method.

A Study on Non-uniformity Correction Method through Uniform Area Detection Using KOMPSAT-3 Side-Slider Image (사이드 슬리더 촬영 기반 KOMPSAT-3 위성 영상의 균일 영역 검출을 통한 비균일 보정 기법 연구 양식)

  • Kim, Hyun-ho;Seo, Doochun;Jung, JaeHeon;Kim, Yongwoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1013-1027
    • /
    • 2021
  • Images taken with KOMPSAT-3 have additional NIR and PAN bands, as well as RGB regions of the visible ray band, compared to imagestaken with a standard camera. Furthermore, electrical and optical properties must be considered because a wide radius area of approximately 17 km or more is photographed at an altitude of 685 km above the ground. In other words, the camera sensor of KOMPSAT-3 is distorted by each CCD pixel, characteristics of each band,sensitivity and time-dependent change, CCD geometry. In order to solve the distortion, correction of the sensors is essential. In this paper, we propose a method for detecting uniform regions in side-slider-based KOMPSAT-3 images using segment-based noise analysis. After detecting a uniform area with the corresponding algorithm, a correction table was created for each sensor to apply the non-uniformity correction algorithm, and satellite image correction was performed using the created correction table. As a result, the proposed method reduced the distortion of the satellite image,such as vertical noise, compared to the conventional method. The relative radiation accuracy index, which is an index based on mean square error (RA) and an index based on absolute error (RE), wasfound to have a comparative advantage of 0.3 percent and 0.15 percent, respectively, over the conventional method.

A Study on the Resolution Enhancement of Digital Image by Area-Based Matching (영역기반정합에 의한 수치영상의 해상도 강화에 관한 연구)

  • 오원진;배연성;주영은
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.3
    • /
    • pp.263-269
    • /
    • 2000
  • As the accuracy of digital photogrammetry is restricted by the resolution of image to be used, it is axiomatic that the resolution of image should be improved. As for the method to constitute hardware with CCD sensor that capacity was expanded or the method to acquire the image of high resolution by deciding the quantity of sub-pixel in advance through moving sensor, the price is expensive. This study tries to enhance the resolution of low resolution image by acquiring the image with the digital camera that the price is cheap and deciding shifts and rotations through matching multiple digital image by means of least square method. As the result of study, the resolution of digital image was improved greatly. So, not only the digital photogrammetry which has the competitive power of price economically is possible in the future but also the application is expected widely.

  • PDF

Single-Chip Eye Ball Sensor using Smart CIS Pixels

  • Kim, Dongsoo;Seunghyun Lim;Gunhee Han
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.847-850
    • /
    • 2003
  • An Eye Ball Sensor (EBS) is a system that locates the point where the user gazes on. The conventional EBS using a CCD camera needs many peripherals, software computation causing high cost and power consumption. This paper proposes a compact EBS using smart CMOS Image Sensor (CIS) pixels. The proposed single chip EBS does not need any peripheral and operates at higher speed and lower cost than the conventional EBS. The test chip was designed and fabricated for 32$\times$32 smart CIS pixel array with a 0.35 um CMOS process occupying 5.3$\textrm{mm}^2$ silicon area.

  • PDF

A Target Segmentation Method Based on Multi-Sensor/Multi-Frame (다중센서-다중프레임 기반 표적분할기법)

  • Lee, Seung-Youn
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.445-452
    • /
    • 2010
  • Adequate segmentation of target objects from the background plays an important role for the performance of automatic target recognition(ATR) system. This paper presents a new segmentation algorithm using fuzzy thresholding to extract a target. The proposed algorithm consists of two steps. In the first step, the region of interest(ROI) including the target can be automatically selected by the proposed robust method based on the frame difference of each image sensor. In the second step, fuzzy thresholding with a proposed membership function is performed within the only ROI selected in the first step. The proposed membership function is based on the similarity of intensity and the adjacency of target area on each image. Experimental results applied to real CCD/IR images show a good performance and the proposed algorithm is expected to enhance the performance of ATR system using multi-sensors.

A New X-Ray Image Sensor Utilizing a Liquid Crystal Panel (새 구조의 액정 엑스선 감지기)

  • Rho, Bong-Gyu
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.4
    • /
    • pp.249-254
    • /
    • 2008
  • We developed a new x-ray image sensor utilizing a reflection-mode liquid crystal panel as its sensitive element, and tested its functionality by using it to obtain an x-ray image of a printed circuit board. In the liquid crystal x-ray image sensors hitherto reported, the liquid crystal layer is in direct contact with the photoconductive film which is deposited on a glass substrate. In the fabrication of the new x-ray image sensor, a liquid crystal panel is fabricated in the first step by using a pair of glass plates of a few centimeters thicknrss. Then one of the glass substrates is ground until its thickness is reduced to about $60\;{\mu}m$. After polishing the glass plate, dielectric films for high reflectance at 630 nm, a film of amorphous selenium for photoconduction, and a transparent conductive film for electrode are deposited in sequence. The new x-ray image sensor has several merits: primarily, fabrication of a large area sensor is more easily compared with the old fashioned x-ray image sensors. Since the reflection type liquid crystal panel has a very steep response curve, the new x-ray sensor has much more sensitivity to x-rays compared with the conventional x-ray area sensor, and the radiation dosage can be reduced down to less then 20%. By combining the new x-ray sensor with CCD camera technology, real-time x-ray images can be easily captured. We report the structure, fabrication process and characteristics of the new x-ray image sensor.

INTRODUCTION OF NUC ALGORITHM IN ON-BOARD RELATIVE RADIOMERIC CALIBRATION OF KOMPSAT-2

  • Song, J.H.;Choi, M.J.;Seo, D.C.;Lee, D.H.;Lim, H.S.
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.504-507
    • /
    • 2007
  • The KOMPSAT-2 satellite is a push-broom system with MSC (Multi Spectral Camera) which contains a panchromatic band and four multi-spectral bands covering the spectral range from 450nm to 900nm. The PAN band is composed of six CCD array with 2528 pixels. And the MS band has one CCD array with 3792 pixels. Raw imagery generated from a push-broom sensor contains vertical streaks caused by variability in detector response, variability in lens falloff, pixel area, output amplifiers and especially electrical gain and offset. Relative radiometric calibration is necessary to account for the detector-to-detector non-uniformity in this raw imagery. Non-uniformity correction (NUC) is that the process of performing on-board relative correction of gain and offset for each pixel to improve data compressibility and to reduce banding and streaking from aggregation or re-sampling in the imagery. A relative gain and offset are calculated for each detector using scenes from uniform target area such as a large desert, forest, sea. In the NUC of KOMPSAT-2, The NUC table for each pixel are divided as HF NUC (high frequency NUC) and LF NUC (low frequency NUC) to apply to few restricted facts in the operating system ofKOMPSAT-2. This work presents the algorithm and process of NUC table generation and shows the imagery to compare with and without calibration.

  • PDF

A Study for Utilization and constitution of MMSS (MMSS 시스템 구성 및 활용에 대한 연구)

  • Kim, Kwang-Yong;Yeun, Yeo-Sang;Choi, Jong-Hyun;Kim, Min-Soo;Kim, Kyoung-Ok
    • Journal of Korea Spatial Information System Society
    • /
    • v.3 no.1 s.5
    • /
    • pp.117-126
    • /
    • 2001
  • We have developed the Mobile Multi Sensor System(MMSS) for the data construction of 4S application and for basic technology acquisition of mobile mapping system in Korea. Using this MMSS, we will collect the information of road and road facilities for DB creation and also construct the Digital Elevation Model(DEM) as ancillary data in urban area. The MMSS consist of the integrated navigation sensor, DGPS & IMU, and digital CCD camera set. In the S/W aspect, we developed the post-processing components for extracting the 3D coordinate information (Spatial Information) and the client program for the MMSS user group. In this paper, we will overview the MMSS constitution and post-processing program, and introduce the utilization plan of MMSS.

  • PDF

Measurement of Hot WireRod Cross-Section by Vision System (비전시스템에 의한 열간 선재 단면 측정)

  • Park, Joong-Jo;Tak, Young-Bong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1106-1112
    • /
    • 2000
  • In this paper, we present a vision system which measures the cross-section of a hot wire-rod in the steel plant. We developed a mobile vision system capable of accurate measurement, which is strong to vibration and jolt when moving. Our system uses green laser light sources and CCD cameras as a sensor, where laser sheet beams form a cross-section contour on the surface of the hot wire-rod and the reflected light from the wire-rode is imaged on the CCD cameras. We use four lasers and four cameras to obtain the image with the complete cross-section contour without an occlusion region. We also perform camera calibrations to obtain each cameras physical parameters by using a single calibration pattern sheet. In our measuring algorithm, distorted four-camera images are corrected by using the camera calibration information and added to generate an image with the complete cross-section contour of the wire-rod. Then, from this image, the cross-section contour of the wire-rod is extracted by preprocessing and segmentation, and its height, width and area are measured.

  • PDF

Detecting and Restoring the Occlusion Area for Generating the True Orthoimage Using IKONOS Image (IKONOS 정사영상제작을 위한 폐색 영역의 탐지와 복원)

  • Seo Min-Ho;Lee Byoung-Kil;Kim Yong-Il;Han Dong-Yeob
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.131-139
    • /
    • 2006
  • IKONOS images have the perspective geometry in CCD sensor line like aerial images with central perspective geometry. So the occlusion by buildings, terrain or other objects exist in the image. It is difficult to detect the occlusion with RPCs(rational polynomial coefficients) for ortho-rectification of image. Therefore, in this study, we detected the occlusion areas in IKONOS images using the nominal collection elevation/azimuth angle and restored the hidden areas using another stereo images, from which the rue ortho image could be produced. The algorithm's validity was evaluated using the geometric accuracy of the generated ortho image.