• Title/Summary/Keyword: CCD area sensor

Search Result 30, Processing Time 0.027 seconds

The Development of Laser Displacement Sensor using CCD&Optical triangulation technique (CCD 와 Optical triangulation Technique을 이용한 Laser Displacement Sensor 의 개발)

  • 박희재;이동성;유인상;유영기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.47-50
    • /
    • 2000
  • Optical triangulation is one of the most common methods for acquiring range data. Using this method. We have developed a new type of Laser Displacement Sensor. We used Area CCD instead of linear CCD and PSD (Position Sensitive Detector). And we have developed the robust algorithm for increasing the accuracy and used USB instead of RS-232C for increasing speed. We present results that demonstrate the validity of our method using optical triangulation technique, Area CCD, and USB.

  • PDF

Inspection of Calandria Reactor Area of Wolsung NPP using Thermal Infrared and CCD Images (CCD와 적외선 열영상의 다중영상을 이용한 월성원자력발전소의 칼란드리아 전면부 점검)

  • Cho, Jai-Wan;Choi, Young-Soo;Kim, Chang-Hoi;Seo, Yong-Chil;Kim, Seung-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.711-714
    • /
    • 2002
  • Thermal infrared camera have poor image qualities compared to commercial CCD cameras, as in contrast, brightness, and. resolution. To compensate the poor Image quality problems associated with the thermal infrared camera, the technique of superimposing thermal infrared image into real ccd image is proposed. The mobile robot KAEROT/m2, loaded with sensor head system at the mast, is entered to monitor leakage of heavy water and thermal abnormality of the calandria reactor area in overhaul period. The sensor head system is composed of thermal infrared camera and cod camera In parallel. When thermal abnormality on observation points and areas of calandria reactor area is occurred, unusual hot image taken from thermal infrared camera is superimposed on real CCD image. In this inspection experiment, more accurate positions of thermal abnormalities on calandria reactor area can be estimated by using technique of mapping thermal infrared image into CCD image, which include characters arranged in MPOQ order.

  • PDF

Virtual Target Overlay Technique by Matching 3D Satellite Image and Sensor Image (3차원 위성영상과 센서영상의 정합에 의한 가상표적 Overlay 기법)

  • Cha, Jeong-Hee;Jang, Hyo-Jong;Park, Yong-Woon;Kim, Gye-Young;Choi, Hyung-Il
    • The KIPS Transactions:PartD
    • /
    • v.11D no.6
    • /
    • pp.1259-1268
    • /
    • 2004
  • To organize training in limited training area for an actuai combat, realistic training simulation plugged in by various battle conditions is essential. In this paper, we propose a virtual target overlay technique which does not use a virtual image, but Projects a virtual target on ground-based CCD image by appointed scenario for a realistic training simulation. In the proposed method, we create a realistic 3D model (for an instructor) by using high resolution Geographic Tag Image File Format(GeoTIFF) satellite image and Digital Terrain Elevation Data (DTED), and extract the road area from a given CCD image (for both an instructor and a trainee). Satellite images and ground-based sensor images have many differences in observation position, resolution, and scale, thus yielding many difficulties in feature-based matching. Hence, we propose a moving synchronization technique that projects the target on the sensor image according to the marked moving path on 3D satellite image by applying Thin-Plate Spline(TPS) interpolation function, which is an image warping function, on the two given sets of corresponding control point pair. To show the experimental result of the proposed method, we employed two Pentium4 1.8MHz personal computer systems equipped with 512MBs of RAM, and the satellite and sensor images of Daejoen area are also been utilized. The experimental result revealed the effective-ness of proposed algorithm.

Efficient Object Tracking System Using the Fusion of a CCD Camera and an Infrared Camera (CCD카메라와 적외선 카메라의 융합을 통한 효과적인 객체 추적 시스템)

  • Kim, Seung-Hun;Jung, Il-Kyun;Park, Chang-Woo;Hwang, Jung-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.229-235
    • /
    • 2011
  • To make a robust object tracking and identifying system for an intelligent robot and/or home system, heterogeneous sensor fusion between visible ray system and infrared ray system is proposed. The proposed system separates the object by combining the ROI (Region of Interest) estimated from two different images based on a heterogeneous sensor that consolidates the ordinary CCD camera and the IR (Infrared) camera. Human's body and face are detected in both images by using different algorithms, such as histogram, optical-flow, skin-color model and Haar model. Also the pose of human body is estimated from the result of body detection in IR image by using PCA algorithm along with AdaBoost algorithm. Then, the results from each detection algorithm are fused to extract the best detection result. To verify the heterogeneous sensor fusion system, few experiments were done in various environments. From the experimental results, the system seems to have good tracking and identification performance regardless of the environmental changes. The application area of the proposed system is not limited to robot or home system but the surveillance system and military system.

Fieldbus Communication Network Requirements for Application of Harsh Environments of Nuclear Power Plant (원전 극한 환경적용을 위한 필드버스 통신망 요건)

  • Cho, Jai-Wan;Lee, Joon-Koo;Hur, Seop;Koo, In-Soo;Hong, Seok-Boong
    • Journal of Information Technology Services
    • /
    • v.8 no.2
    • /
    • pp.147-156
    • /
    • 2009
  • As the result of the rapid development of IT technology, an on-line diagnostic system using the field bus communication network coupled with a smart sensor module will be widely used at the nuclear power plant in the near future. The smart sensor system is very useful for the prompt understanding of abnormal state of the key equipments installed in the nuclear power plant. In this paper, it is assumed that a smart sensor system based on the fieldbus communication network for the surveillance and diagnostics of safety-critical equipments will be installed in the harsh-environment of the nuclear power plant. It means that the key components of fieldbus communication system including microprocessor, FPGA, and ASIC devices, are to be installed in the RPV (reactor pressure vessel) and the RCS (reactor coolant system) area, which is the area of a high dose-rate gamma irradiation fields. Gamma radiation constraints for the DBA (design basis accident) qualification of the RTD sensor installed in the harsh environment of nuclear power plant, are typically on the order of 4 kGy/h. In order to use a field bus communication network as an ad-hoc diagnostics sensor network in the vicinity of the RCS pump area of the nuclear power plant, the robust survivability of IT-based micro-electronic components in such intense gamma-radiation fields therefore should be verified. An intelligent CCD camera system, which are composed of advanced micro-electronics devices based on IT technology, have been gamma irradiated at the dose rate of about 4.2kGy/h during an hour UP to a total dose of 4kGy. The degradation performance of the gamma irradiated CCD camera system is explained.

Multisensor System Integrating Optical Tactile and F/T Sensors for Determination of Type and Position of 3D Contact Surface (3차원 접촉면의 인식 및 위치의 결정의 위한 광촉각센서와 역각센서의 다중센서시스템)

  • 한헌수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.2
    • /
    • pp.10-19
    • /
    • 1996
  • This paper presents a finger-shaped multisensor system which can measure the tyep and position of a target surface by contactl. The multi-sensor system consists of a sphere-shpaed optical tactile sensor located at the finger tip and a force/torque sensor located at the joint of a finger. The optial tactile sensor determines the type and position of the target surface using the shape and position of the CCD image of the touching area generated by a contact between the sensor and the taget surface. The force/torque sensor also determines the position and surface normal vector by applying the distributionof forces and torques t the contact point to the equations of finger shape. The measurements on the position and surface normal vector at a contact point obtined by two individual sensors are fused using a statistical method. The integrated sensor system has 0.8mm error in position measurement and 1.31$^{\circ}$ error in normal vector measurement. The developed sensor system has many applications, such as autonomous compliance control, automatic grasping and recognition, etc.

  • PDF

Design Fabrication and Operation of the 16$\times$16 charge Coupled Area Image Sensor Using Double Polysilicon Gates (다결정 실리콘 이중전극 구조를 이용한 16$\times$16 이차원 전하결합 영상감지소자의 설계, 제작 및 동작)

  • Jeong, Ji-Chae;O, Chun-Sik;Kim, Chung-Gi
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.3
    • /
    • pp.68-76
    • /
    • 1985
  • A charge-coupled device (CCD) area image sensor has been demonstrated with an experi-mental 16$\times$16 prototype. The prototype is a vertical frame transfer charge.coupled imager using two-phase gate electrode structures. In this device, ion-implanted barriers are used for two -phase CCD, and NMOS process has been adopted. The total imaging setup consisting of optical lens, clock generators, clock drivels, staircase signal generators, and oscilloscope is easily achieved with the aid of PROM . English alphabets are displayed on the oscilloscope screen using the total imaging set-up. We measure charge transfer inefficiency and dark current for the fabricated devices.

  • PDF

Measurement of the Photon Fluence for the Evaluation of Photon Detection Efficiency of Photon Counting Sensor (광계수형 센서의 포톤계수효율 평가를 위한 포톤플루엔스 측정)

  • Park, Ji-Koon;Heo, Ye-Ji;Kim, Kyo-Tae;Noh, Si-Cheol;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Recently, the various digital X-ray imaging devices using CCD and TFT LCD-based flat panel digital X-ray sensor are being used. In particular, a number of studies on photon counting sensor technique have been reported. In this study, the incident X-rays fluence on the photon counting sensor material was measured to estimate photon detection efficiency which is the quantitative performance evaluation factor of photon counting sensor. The result of measuring the photon fluence by using RQA-M2 Radiation beam quality of IEC 61223-1-2 recommendations, the incident photon fluence could be defined as about $4 photons/(0.01mm)^2{\cdot}{\mu}Gy$ within $10{\mu}m$ pin-hole area, and about $50photons/(0.03mm)^2{\cdot}{\mu}Gy$ within $30{\mu}m$ pin-hole area, and about $698photons/(0.1mm)^2{\cdot}{\mu}Gy$ within $100{\mu}m$ pin-hole area. Consequently, with the previously setup of the incident fluence, the measuring of actual photon counting efficiency by observing the output waveform of the photon counting sensor material was considered possible.

An Indoor Localization of Mobile Robot through Sensor Data Fusion (센서융합을 이용한 모바일로봇 실내 위치인식 기법)

  • Kim, Yoon-Gu;Lee, Ki-Dong
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.312-319
    • /
    • 2009
  • This paper proposes a low-complexity indoor localization method of mobile robot under the dynamic environment by fusing the landmark image information from an ordinary camera and the distance information from sensor nodes in an indoor environment, which is based on sensor network. Basically, the sensor network provides an effective method for the mobile robot to adapt to environmental changes and guides it across a geographical network area. To enhance the performance of localization, we used an ordinary CCD camera and the artificial landmarks, which are devised for self-localization. Experimental results show that the real-time localization of mobile robot can be achieved with robustness and accurateness using the proposed localization method.

  • PDF

The Development of Image Processing System Using Area Camera for Feeding Lumber (영역카메라를 이용한 이송중인 제재목의 화상처리시스템 개발)

  • Kim, Byung Nam;Lee, Hyoung Woo;Kim, Kwang Mo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.37-47
    • /
    • 2009
  • For the inspection of wood, machine vision is the most common automated inspection method used at present. It is required to sort wood products by grade and to locate surface defects prior to cut-up. Many different sensing methods have been applied to inspection of wood including optical, ultrasonic, X-ray sensing in the wood industry. Nowadays the scanning system mainly employs CCD line-scan camera to meet the needs of accurate detection of lumber defects and real-time image processing. But this system needs exact feeding system and low deviation of lumber thickness. In this study low cost CCD area sensor was used for the development of image processing system for lumber being fed. When domestic red pine being fed on the conveyer belt, lumber images of irregular term of captured area were acquired because belt conveyor slipped between belt and roller. To overcome incorrect image merging by the unstable feeding speed of belt conveyor, it was applied template matching algorithm which was a measure of the similarity between the pattern of current image and the next one. Feeding the lumber over 13.8 m/min, general area sensor generates unreadable image pattern by the motion blur. The red channel of RGB filter showed a good performance for removing background of the green conveyor belt from merged image. Threshold value reduction method that was a image-based thresholding algorithm performed well for knot detection.