• Title/Summary/Keyword: CCAAT/enhancer-binding protein-beta

Search Result 52, Processing Time 0.028 seconds

Study of Lipoprotein Lipase Inhibitory Activity of Anti-obesity Herb Extracts (항비만소재의 lipoprotein lipase 억제 작용 연구)

  • Lee, Sung Mee;Kang, Yun Hwan;Kim, Kyoung Kon;Kim, Tae Woo;Choe, Myeon
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.246-253
    • /
    • 2015
  • In this study, we evaluated the lipoprotein lipase (LPL) inhibitory activity of 11 water extracts derived from Cinnamomum cassia Blume, Sarcodon aspratus, Cordyceps militaris, Crataegus pinnatifida Bunge, Corni fructus, Allium cepa, Coix lacryma-jobi, Plantago asiatica L., Lentinus edodes, Rosa rugosa, and Foeniculum fructus. The results of the LPL secretion and activity assay showed Sarcodon aspratus (NE) extract have an LPL secretion inhibitory acitivity. The cause of reduction in LPL secretion after NE treatment was investigated using molecular biology methods. NE treatment affected the LPL content in cells, but did not affect LPL mRNA expression. It also increased the mRNA expression level of sortilin-related receptor LDLR class A (SorLA), a receptor that induces endocytosis and intracellular trafficking of LPL. Finally, cell fractionation revealed that NE treatment induced the expression of CCAAT-enhancer-binding protein beta ($C/EBP{\beta}$), a SorLA transcription factor, in the nuclei of 3T3-L1 adipocytes. These results show that NE's anti-obesity effect involves inhibition of LPL secretion through $C/EBP{\beta}$-mediated induction of SorLA expression.

Activation of C/EBP$\beta$ by PD98059 leads to the induction of GSTA2

  • Park, E-Y;Kang, K-W;Kim, S-G
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.05a
    • /
    • pp.72-72
    • /
    • 2003
  • Induction of glutathione S-transferases is associated with cancer chemoprevention. We reported that PD98059, an MKK1 inhibitor, induces glutathione Stransferase A2 (rGSTA2). This report comparatively examines the role of CCAAT/enhancer binding protein (C/EBP) and Nrf-2 in the induction of rGSTA2 by PD98059. PD98059 at the concentrations effective for the inhibition of MKKI increased the rGSTA2 protein and mRNA levels in H4IIE cells. (omitted)

  • PDF

Cilostazol Promotes the Migration of Brain Microvascular Endothelial Cells (Cilostazol에 의한 뇌혈관내피세포의 세포이동 증진 효과연구)

  • Lee, Sae-Won;Park, Jung Hwa;Shin, Hwa Kyoung
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1367-1375
    • /
    • 2016
  • Cilostazol is known to be a selective inhibitor of phosphodiesterase III and is generally used to treat stroke. Our previous findings showed that cilostazol enhanced capillary density through angiogenesis after focal cerebral ischemia. Angiogenesis is an important physiological process for promoting revascularization to overcome tissue ischemia. It is a multistep process consisting of endothelial cell proliferation, migration, and tubular structure formation. Here, we examined the modulatory effect of cilostazol at each step of the angiogenic mechanism by using human brain microvascular endothelial cells (HBMECs). We found that cilostazol increased the migration of HBMECs in a dose-dependent manner. However, it did not enhance HBMEC proliferation and capillary-like tube formation. We used a cDNA microarray to analyze the mechanisms of cilostazol in cell migration. We picked five candidate genes that were potentially related to cell migration, and we confirmed the gene expression levels by real-time PCR. The genes phosphoserine aminotransferase 1 (PSAT1) and CCAAT/enhancer binding protein ${\beta}$ ($C/EBP{\beta}$) were up-regulated. The genes tissue factor pathway inhibitor 2 (TFPI2), retinoic acid receptor responder 1 (RARRES1), and RARRES3 were down-regulated. Our observations suggest that cilostazol can promote angiogenesis by promoting endothelial migration. Understanding the cilostazol-modulated regulatory mechanisms in brain endothelial cells may help stimulate blood vessel formation for the treatment of ischemic diseases.

β-catenin protein utilized by Tumour necrosis factor-α in porcine preadipocytes to suppress differentiation

  • Luo, Xiao;Li, Hui-Xia;Liu, Rong-Xin;Wu, Zong-Song;Yang, Ying-Juan;Yang, Gong-She
    • BMB Reports
    • /
    • v.42 no.6
    • /
    • pp.338-343
    • /
    • 2009
  • The Wnt/$\beta$-catenin signaling pathway alters adipocyte differentiation by inhibiting adipogenic gene expression. $\beta$-catenin plays a central role in the Wnt/$\beta$-catenin signaling pathway. In this study, we revealed that tumour necrosis factor-$\alpha$ (TNF-$\alpha$), a potential negative regulator of adipocyte differentiation, inhibits porcine adipogenesis through activation of the Wnt/$\beta$-catenin signaling pathway. Under the optimal concentration of TNF-$\alpha$, the intracellular $\beta$-catenin protein was stabilized. Thus, the intracellular lipid accumulation of porcine preadipocyte was suppressed and the expression of important adipocyte marker genes, including peroxisome proliferator-activated receptor-$\gamma$ (PPAR$\gamma$) and CCAAT/enhancer binding protein-$\alpha$ (C/EBP$\alpha$), were inhibited. However, a loss of $\beta$-catenin in porcine preadipocytes enhanced the adipogenic differentiation and attenuated TNF-$\alpha$ induced anti-adipogenesis. Taken together, this study indicated that TNF-$\alpha$ inhibits adipogenesis through stabilization of $\beta$-catenin protein in porcine preadipocytes.

Assessment of Adipocyte Differentiation and Maturation-related Gene Expression in the Epididymal Fat of Estrogen Receptor α Knockout (ERαKO) Mouse during Postnatal Development Period

  • Cheon, Yong-Pil;Ko, CheMyong;Lee, Ki-Ho
    • Development and Reproduction
    • /
    • v.24 no.4
    • /
    • pp.287-296
    • /
    • 2020
  • The absence of functional estrogen receptor α (Esr1) results in an overgrowth of the epididymal fat, as observed in estrogen receptor α knockout (ERαKO) mouse. The present research was aimed to evaluate expression of various molecules associated with adipocyte differentiation and maturation in the epididymal fat of ERαKO mouse at several postnatal ages by using quantitative real-time polymerase chain reaction. The highest transcript levels of all molecules were detected at 12 months of postnatal age, except leptin which the mRNA level was increased at 5 months of age and was unchanged until 12 months of age. The expression levels of CCAAT enhancer binding protein (Cebp) alpha, androgen receptor, and lipoprotein lipase were decreased at 5 months of age but increased at about 8 months of age. The mRNA levels of Cebp gamma and sterol regulatory element binding transcription factor 1 remained steady until 8 months of age. Continuous increases of transcript levels during postnatal period were found in Cebp beta, estrogen receptor (ER) beta, fatty acid binding protein 4, and delta like non-canonical Notch ligand 1. The increases of peroxisome proliferator-activated receptor gamma and adiponectin mRNA levels were detected as early as 8 months of age. The levels of fatty acid synthase and resistin transcript at 5 and 8 months of age were lower than that at 2 months of age. These findings show the aberrant expression patterns of genes related to adipocyte differentiation and maturation in the postnatal epididymal fat pad by the disruption of ER alpha function.

Inhibitory effect of Allium macrostemon extracts on adipogenesis of 3T3-L1 preadipocytes (산달래 추출물의 3T3-L1 지방전구세포 분화 억제 효능)

  • Lee, Joo-Yeon;Jeong, Yeju;Kim, Jina;Kim, Choon Young
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.441-449
    • /
    • 2020
  • The aim of this study was to compare the biological activities of whole-plant (WAE), bulb (BAE), and leaf (LAE) extracts of Allium macrostemon. The antioxidant activities, total polyphenol contents, and anti-adipogenic activities of WAE and LAE were superior to those of BAE, whereas the biological effects of WAE and LAE were similar. Therefore, the effect of LAE on adipogenesis was further investigated. Treatment of preadipocytes with LAE at 100 g/mL resulted in the inhibition of intracellular lipid accumulation by 49.64%. Consistent with this result, quantitative reverse transcription-PCR showed that LAE treatment decreased the gene expressions of CCAAT/enhancer-binding protein beta (C/EBPβ), peroxisome proliferator-activated receptor gamma (PPARγ), C/EBPα and stearoyl-CoA desaturase 1 (SCD1). Thus, LAE attenuates the adipogenesis of preadipocytes by suppressing the expression of adipogenic and lipogenic genes. These results suggest that LAE can be potentially useful as a functional ingredient to prevent obesity in the food industry.

Effects of Hizikia fusiforme Extracts on Adipocyte Differentiation and Adipogenesis in 3T3-L1 Preadipocytes (톳 분획물이 3T3-L1 지방전구세포의 분화 및 지방생성의 억제에 미치는 영향)

  • Choi, Eun Ok;Kim, Hyang Suk;Han, Min Ho;Choi, Yung Hyun;Kim, Byung Woo;Hwang, Jinah;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1399-1406
    • /
    • 2012
  • The present study was conducted to evaluate the effects of various extracts of Hizikia fusiforme on the anti-obesity effects in 3T3-L1 preadipocytes. We used H. fusiforme extracts from ethanol (EEHF), dichloromethane (CFHF), ethyl acetate (EAFHF), butanol (BFHF), and water (WFHF). Treatment with these extracts significantly suppressed terminal differentiation of 3T3-L1 preadipocytes in a dose-dependent manner as confirmed by a decrease in lipid droplet content through Oil Red O staining; this effect was higher in WFHF than in other extracts. The concentrations of cellular triglyceride were also reduced in 3T3-L1 cells by exposure with these extracts, especially when compared with the controls. Treatment with 200 ${\mu}g/ml$ of WFHF and CFHF caused approximately 42.6% and 23.7% reduction, respectively. In addition, the extracts of H. fusiforme significantly reduced the expression levels of key pro-adipogenic transcription factors, including peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) and CCAAT/enhancer binding proteins ${\alpha}$ (C/$EBP{\alpha}$) and C/$EBP{\beta}$ as compared with controls. Accordingly, our data indicated that WFHF has a preeminent effect on inhibition of adipocyte differentiation among various extracts, and H. fusiforme extracts may be an ideal candidate for obesity relief.

Resveratrol inhibits the protein expression of transcription factors related adipocyte differentiation and the activity of matrix metalloproteinase in mouse fibroblast 3T3-L1 preadipocytes

  • Kang, Nam E;Ha, Ae Wha;Kim, Ji Young;Kim, Woo Kyoung
    • Nutrition Research and Practice
    • /
    • v.6 no.6
    • /
    • pp.499-504
    • /
    • 2012
  • This study attempted to investigate the effects of resveratrol on the differentiation of adipocytes. After cells were treated with various concentrations of resveratrol (0, 10, 20, and 40 ${\mu}mol/L$), adipocyte proliferation, the protein expression of transcription factors, and MMPs' activities were determined. Cell proliferation was inhibited more within 4 days of incubation (P<0.05), and lipid accumulation in adipocyte was significantly inhibited by 93.8%, 92.4% and 91.5%, respectively, after two days of 10, 20, and 40 ${\mu}mol/L$ resveratrol treatment (P<0.05). Six days of incubation with the three resveratrol concentrations caused a significantly decreases of 63%, 59.9%, and 25.1% GPDH activity as a dose-dependent response. The triglyceride concentration also decreased significantly with the increase of resveratrol concentration (P<0.05). The protein expression of CCAAT/enhancer-binding protein (C/$EBP{\beta}$) was decreased significantly by 56% and 30% while $PPAR{\gamma}$ was significantly reduced by 57% and 15% with resveratrol treatments of 20 and 40 ${\mu}mol/L$, respectively (P<0.05). The protein expression of C/$EBP{\alpha}$ was decreased by 83%, 74%, and 38% to increased dosage levels, with significance determined for this decrease from 20 ${\mu}mol/L$ of resveratrol. The protein expression of fatty acid binding protein (FABP4) was decreased significantly by 88%, 72%, and 46% with the increase of resveratrol concentration. The activity of MMP-2 was decreased significantly by 84%, 70%, and 63% while MMP-9 activity was decreased significantly by 74%, 62%, and 39% with the increased resveratrol concentrations of 10, 20, and 40 ${\mu}mol/L$, respectively (P<0.05).

Effects of Pueraria lobata Root Ethanol Extract on Adipogenesis and Lipogenesis During 3T3-L1 Differentiation into Adipocytes

  • Lee, Chae Myoung;Yoon, Mi Sook;Kim, Young Chul
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.191-201
    • /
    • 2015
  • We evaluated the inhibitory effect of Pueraria lobata root ethanol extract (PLREE) on lipid accumulation during 3T3-L1 differentiation to adipocytes by measuring the intracellular expression of adipogenic, lipogenic, and lipolytic markers and lipid accumulation. The total polyphenol and flavonoid content of PLREE were 47 and 29 mg/g, respectively. The electron donating capacity of PLREE at $1,000{\mu}g/mL$ was 48.8%. Treatment of 3T3-L1 preadipocytes with 100, 250, or $500{\mu}g/mL$ PLREE for 8 days dose-dependently promoted the differentiation of 3T3-L1 cells. In contrast, the lipid content of PLREE-treated cells was significantly reduced by 7.8% (p < 0.05), 35.6% (p < 0.001), and 42.2% (p < 0.001) following treatment with 100, 250, and $500{\mu}g/mL$ PLREE, respectively, as compared to differentiated control cells. PLREE upregulated peroxisome proliferator-activated receptor ${\gamma}$ mRNA and protein, and sterol regulator element-binding protein-1c mRNA levels, but did not affect CCAAT/enhancer binding-protein ${\beta}$ and ${\alpha}$ mRNA levels. PLREE also downregulated acetyl-CoA carboxylase mRNA and protein, fatty acid synthase (FAS) protein, and leptin mRNA levels, but did not affect FAS mRNA expression. PLREE upregulated adipose triglyceride lipase mRNA and protein expression, and hormone-sensitive lipase (HSL) protein expression, but did not affect HSL mRNA expression. In conclusion, we found that PLREE enhanced adipogenesis, but reduced lipogenesis, resulting in decreased lipid accumulation in 3T3-L1 cells.

Transcriptional Responses of Human Respiratory Epithelial Cells to Nontypeable Haemophilus influenzae Infection Analyzed by High Density cDNA Microarrays

  • Lee, Ji-Yeon;Lee, Na-Gyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.836-843
    • /
    • 2004
  • Nontypeable H. influenzae (NTHi), a Gram-negative obligate human pathogen, causes pneumonia, chronic bronchitis, and otitis media, and the respiratory epithelium is the first line of defense that copes with the pathogen. In an effort to identify transcriptional responses of human respiratory epithelial cells to infection with NTHi, we examined its differential gene expression using high density cDNA microarrays. BEAS-2B human bronchial epithelial cells were exposed to NTHi for 3 hand 24 h, and the alteration of mRNA expression was analyzed using microarrays consisting of 8,170 human cDNA clones. The results indicated that approximately 2.6% of the genes present on the microarrays increased in expression over 2-fold and 3.8% of the genes decreased during the 24-h infection period. Upregulated genes included cytokines (granulocyte-macrophage colony stimulating factor 2, granulocyte chemotactic protein 2, IL-6, IL-10, IL-8), transcription factors (Kruppel-like factor 7, CCAAT/enhancer binding protein $\beta$, E2F-1, NF-$\kappa$B, cell surface molecules (CD74, ICAM-1, ICAM-2, HLA class I), as well as those involved in signal transduction and cellular transport. Selected genes were further confirmed by reverse-transcription-PCR. These data expand our knowledge of host cellular responses during NTHi infection and should provide a molecular basis for the study of host-NTHi interaction.