DOI QR코드

DOI QR Code

Effects of Hizikia fusiforme Extracts on Adipocyte Differentiation and Adipogenesis in 3T3-L1 Preadipocytes

톳 분획물이 3T3-L1 지방전구세포의 분화 및 지방생성의 억제에 미치는 영향

  • Choi, Eun Ok (Department of Food and Nutrition, Dongeui University) ;
  • Kim, Hyang Suk (Department of Food and Nutrition, Dongeui University) ;
  • Han, Min Ho (Department of Oriental Medicine, Dongeui University) ;
  • Choi, Yung Hyun (Anti-aging Research Center, Dongeui University) ;
  • Kim, Byung Woo (Blue-Bio Industry Regional Innovation Center, Dongeui University) ;
  • Hwang, Jinah (Department of Food and Nutrition, Myongji University) ;
  • Hwang, Hye Jin (Department of Food and Nutrition, Dongeui University)
  • 최은옥 (동의대학교 생활과학대학 식품영양학과) ;
  • 김향숙 (동의대학교 생활과학대학 식품영양학과) ;
  • 한민호 (동의대학교 한의학과) ;
  • 최영현 (동의대학교 항노화연구소) ;
  • 김병우 (동의대학교 블루바이오소재개발센터) ;
  • 황진아 (명지대학교 식품영양학과) ;
  • 황혜진 (동의대학교 생활과학대학 식품영양학과)
  • Received : 2012.08.31
  • Accepted : 2012.09.28
  • Published : 2012.10.30

Abstract

The present study was conducted to evaluate the effects of various extracts of Hizikia fusiforme on the anti-obesity effects in 3T3-L1 preadipocytes. We used H. fusiforme extracts from ethanol (EEHF), dichloromethane (CFHF), ethyl acetate (EAFHF), butanol (BFHF), and water (WFHF). Treatment with these extracts significantly suppressed terminal differentiation of 3T3-L1 preadipocytes in a dose-dependent manner as confirmed by a decrease in lipid droplet content through Oil Red O staining; this effect was higher in WFHF than in other extracts. The concentrations of cellular triglyceride were also reduced in 3T3-L1 cells by exposure with these extracts, especially when compared with the controls. Treatment with 200 ${\mu}g/ml$ of WFHF and CFHF caused approximately 42.6% and 23.7% reduction, respectively. In addition, the extracts of H. fusiforme significantly reduced the expression levels of key pro-adipogenic transcription factors, including peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) and CCAAT/enhancer binding proteins ${\alpha}$ (C/$EBP{\alpha}$) and C/$EBP{\beta}$ as compared with controls. Accordingly, our data indicated that WFHF has a preeminent effect on inhibition of adipocyte differentiation among various extracts, and H. fusiforme extracts may be an ideal candidate for obesity relief.

본 연구에서는 톳 분획물의 항비만 효과 및 그에 따른 생화학적 기전의 해석을 위하여 톳 분획물이 비만유도인자에 의하여 인위적으로 유발된 adipogenesis 과정에 있어서 어떠한 영향을 미치는 지를 조사하였고, 이때 $PPAR{\gamma}$, C/$EBP{\alpha}$ 및 C/$EBP{\beta}$ 등과 같은 adipogenic transcription factor들의 발현에 어떠한 변화가 유발되었는지를 조사하였다. 각각의 톳 분획물들이 성숙한 지방세포에서 나타나는 lipid droplet 및 TG 생성에 어떠한 영향을 미치는 지를 확인한 결과, 모든 분획물에서 lipid droplet 및 TG 생성억제가 나타났지만 특히 WFHF 처리군에서 이러한 현상이 가장 강하게 나타났다. 또한 lipid droplet 및 TG 생성에 중요한 역할을 하는 것으로 알려진 adipogenic transcription factor들의발현에각각의분획물들이 어떠한영향을미치는지를확인한결과,WFHF 처리군에서 $PPAR{\gamma}$, C/$EBP{\alpha}$ 및 C/$EBP{\beta}$의 발현이 현저하게 감소하였음을 확인하였다. 이상의 결과를 종합해 보면 다섯 종류의 톳 분획물 모두 비만억제 효과가 있는 것으로 나타났고 특히 WFHF의 비만억제 효과가 강하게 나타났음을 알 수 있었다. 본 연구 결과는 톳의 비만억제 가능성을 제시하는 것으로서 항비만 기전에 대한 생화학적 해석 및 이를 활용한 향후 지속적인 연구를 위한 자료로서 그 가치가 매우 높을 것으로 생각된다.

Keywords

References

  1. Alessi, M. C., Lijnen, H. R., Bastelica, D. and Juhan-Vague, I. 2003. Adipose tissue and atherothrombosis. Pathophysiol. Haemost. Thromb. 33, 290-297. https://doi.org/10.1159/000083816
  2. Cao, Z., Umek, R. M. and McKnight, S. L. 1991. Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev. 5, 1538-1552. https://doi.org/10.1101/gad.5.9.1538
  3. Chen, Z., Torrens, J. I., Anand, A., Spiegelman, B. M. and Friedman, J. M. 2005. Krox20 stimulates adipogenesis via C/EBPbeta-dependent and -independent mechanisms. Cell Metab. 1, 93-106. https://doi.org/10.1016/j.cmet.2004.12.009
  4. Christy, R. J., Kaestner, K. H., Geiman, D. E. and Lane, M. D. 1991. CCAAT/enhancer binding protein gene promoter: binding of nuclear factors during differentiation of 3T3-L1 preadipocytes. Proc. Natl. Acad. Sci. USA. 88, 2593-2597. https://doi.org/10.1073/pnas.88.6.2593
  5. Dobashi, K., Nishino, T., Fujihara, M. and Nagumo, T. 1989. Isolation and preliminary characterization of fucose-containing sulfated polysaccharides with blood-anticoagulant activity from the brown seaweed Hizikia fusiforme. Carbohydr. Res. 194, 315-320. https://doi.org/10.1016/0008-6215(89)85032-3
  6. Gesta, S., Tseng, Y. H. and Kahn, C. R. 2007. Developmental origin of fat: tracking obesity to its source. Cell 131, 242-256. https://doi.org/10.1016/j.cell.2007.10.004
  7. Hamm, J. K., Park, B. H. and Farmer, S. R. 2001. A role for C/EBPbeta in regulating peroxisome proliferatoractivated receptor gamma activity during adipogenesis in 3T3-L1 preadipocytes. J. Biol. Chem. 276, 18464-18471. https://doi.org/10.1074/jbc.M100797200
  8. Labreuche, J., Touboul, P. J. and Amarenco, P. 2009. Plasma triglyceride levels and risk of stroke and carotid atherosclerosis: a systematic review of the epidemiological studies. Atherosclerosis 203, 331-345. https://doi.org/10.1016/j.atherosclerosis.2008.08.040
  9. Lew, E. A. 1985. Mortality and weight: insured lives and the American Cancer Society studies. Ann. Intern. Med. 103, 1024-1029. https://doi.org/10.7326/0003-4819-103-6-1024
  10. Li, B., Wei, X. J., Sun, J. L. and Xu, S. Y. 2006. Structural investigation of a fucoidan containing a fucose-free core from the brown seaweed, Hizikia fusiforme. Carbohydr. Res. 341, 1135-1146. https://doi.org/10.1016/j.carres.2006.03.035
  11. Manickam, E., Sinclair, A. J. and Cameron-Smith, D. 2010. Suppressive actions of eicosapentaenoic acid on lipid droplet formation in 3T3-L1 adipocytes. Lipids Health Dis. 9, 57. https://doi.org/10.1186/1476-511X-9-57
  12. Morrison, R. F. and Farmer, S. R. 2000. Hormonal signaling and transcriptional control of adipocyte differentiation. J. Nutr. 130, 3116S-3121S.
  13. Okai, Y., Higashi-Okai, K., Ishizaka, S. and Yamashita, U. 1997. Enhancing effect of polysaccharides from an edible brown alga, Hijikia fusiforme (Hijiki), on release of tumor necrosis factor-alpha from macrophages of endotoxin-nonresponder C3H/HeJ mice. Nutr. Cancer 27, 74-79. https://doi.org/10.1080/01635589709514505
  14. Owen, T. A., Aronow, M., Shalhoub, V., Barone, L. M., Wilming, L., Tassinari, M. S., Kennedy, M. B., Pockwinse, S., Lian, J. B. and Stein, G. S. 1900. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J. Cell. Physiol. 143, 420-430.
  15. Roncari, D. A., Lau, D. C. and Kindler, S. 1981. Exaggerated replication in culture of adipocyte precursors from massively obese persons. Metabolism 30, 425-427. https://doi.org/10.1016/0026-0495(81)90174-8
  16. Rosen, E. D. and MacDougald, O. A. 2006. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell. Biol. 7, 885-896. https://doi.org/10.1038/nrm2066
  17. Spiegelman, B. M. and Flier, J. S. 1996. Adipogenesis and obesity: rounding out the big picture. Cell 87, 377-389. https://doi.org/10.1016/S0092-8674(00)81359-8
  18. Stroheker, T., Cabaton, N., Berges, R., Lamothe, V., Lhuguenot, J. C. and Chagnon, M. C. 2003. Influence of dietary soy isoflavones on the accessory sex organs of the Wistar rat. Food Chem. Toxicol. 41, 1175-1183. https://doi.org/10.1016/S0278-6915(03)00108-X
  19. Wu, Z., Bucher, N. L. and Farmer, S. R. 1996. Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Mol. Cell. Biol. 16, 4128-4136.
  20. Wu, Z., Xie, Y., Bucher, N. L. and Farmer, S. R. 1995. Conditional ectopic expression of C/EBP beta in NIH-3T3 cells induces PPAR gamma and stimulates adipogenesis. Genes Dev. 9, 2350-2363. https://doi.org/10.1101/gad.9.19.2350
  21. Yano, T., Kobori, S., Sakai, M., Anami, Y., Matsumura, T., Matsuda, H., Kasho, M. and Shichiri, M. 1997. Beta-very low density lipoprotein induces triglyceride accumulation through receptor mediated endocytotic pathway in 3T3-L1 adipocytes. Atherosclerosis 135, 57-64. https://doi.org/10.1016/S0021-9150(97)00146-9
  22. Yeh, W. C., Cao, Z., Classon, M. and McKnight, S. L. 1995. Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev. 9, 168-181. https://doi.org/10.1101/gad.9.2.168
  23. Zhang, J. W., Klemm, D. J., Vinson, C. and Lane, M. D. 2004. Role of CREB in transcriptional regulation of CCAAT/enhancer-binding protein beta gene during adipogenesis. J. Biol. Chem. 279, 4471-4478.
  24. Zimmermann, R., Strauss, J. G., Haemmerle, G., Schoiswohl, G., Birner-Gruenberger, R., Riederer, M., Lass, A., Neuberger, G., Eisenhaber, F., Hermetter, A. and Zechner, R. 2004. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1383-1386. https://doi.org/10.1126/science.1100747

Cited by

  1. Effects of Myelophycus Simplex Papenfuss Methanol Extract on Adipocyte Differentiation and Adipogenesis in 3T3-L1 Preadipocytes vol.25, pp.1, 2015, https://doi.org/10.5352/JLS.2015.25.1.62
  2. Potential of Fisetin as a Nutri-cosmetics Material through Evaluating Anti-oxidant and Anti-adipogenic Activities vol.14, pp.1, 2016, https://doi.org/10.20402/ajbc.2016.0003
  3. Effects of Water and Ethanol Extracts from Four Types of Domestic Seaweeds on Cell Differentiation in 3T3-L1 Cell Line vol.25, pp.6, 2015, https://doi.org/10.17495/easdl.2015.12.25.6.990
  4. Effects of Cladosiphon Okamuranus Dietary Fiber on Cholesterol in High Fat Diet-Fed Rats vol.29, pp.4, 2014, https://doi.org/10.13103/JFHS.2014.29.4.370