• Title/Summary/Keyword: CASL

Search Result 7, Processing Time 0.024 seconds

The effects of labeling gap and susceptibility artifacts in pCASL perfusion MRI (pCASL 관류 영상에서 표지 간격과 자화감수성 인공물이 영상에 미치는 영향)

  • Kim, Seong-Hu
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.213-217
    • /
    • 2015
  • To report problems found in a patient who has implemented stent implantation and then conducted a perfusion MRI using ASL(Arterial Spin Labeling), in order to suggest a solution to them. The perfusion MRI was conducted, using pCASL among ASL methods. Data from pCASL(Pseudo Continuous Arterial Spin Labeling) was acquired together with the structural image simply by changing position(labeling gap 15 mm, 170 mm) of the labeling pulse to avoid stent. Data was processed through the ASLtbx. When perfusion MRI was acquired using pCASL, it showed that the position of the conventional labeling pulse (labeling gap 24 mm) was overlapped with that of stent, which made signal intensity in right brain tissue appear as if it were void. When the labeling pulse was positioned (labeling gap 15 mm) to avoid stent, high signal intensity images were acquired. In labeling pulse (labeling gap 170 mm), the signal intensity was more reduced due to relaxation before labeled blood arrived at the imaging slice. pCASL can be stably repeated measurements because it does not use a contrast agent. And it should be selected with the appropriate image acquisition parameters for the high quality image.

MC21/CTF and VERA multiphysics solutions to VERA core physics benchmark progression problems 6 and 7

  • Kelly, Daniel J. III;Kelly, Ann E.;Aviles, Brian N.;Godfrey, Andrew T.;Salko, Robert K.;Collins, Benjamin S.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1326-1338
    • /
    • 2017
  • The continuous energy Monte Carlo neutron transport code, MC21, was coupled to the CTF subchannel thermal-hydraulics code using a combination of Consortium for Advanced Simulation of Light Water Reactors (CASL) tools and in-house Python scripts. An MC21/CTF solution for VERA Core Physics Benchmark Progression Problem 6 demonstrated good agreement with MC21/COBRA-IE and VERA solutions. The MC21/CTF solution for VERA Core Physics Benchmark Progression Problem 7, Watts Bar Unit 1 at beginning of cycle hot full power equilibrium xenon conditions, is the first published coupled Monte Carlo neutronics/subchannel T-H solution for this problem. MC21/CTF predicted a critical boron concentration of 854.5 ppm, yielding a critical eigenvalue of $0.99994{\pm}6.8E-6$ (95% confidence interval). Excellent agreement with a VERA solution of Problem 7 was also demonstrated for integral and local power and temperature parameters.

A lumped parameter method of characteristics approach and multigroup kernels applied to the subgroup self-shielding calculation in MPACT

  • Stimpson, Shane;Liu, Yuxuan;Collins, Benjamin;Clarno, Kevin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1240-1249
    • /
    • 2017
  • An essential component of the neutron transport solver is the resonance self-shielding calculation used to determine equivalence cross sections. The neutron transport code, MPACT, is currently using the subgroup self-shielding method, in which the method of characteristics (MOC) is used to solve purely absorbing fixed-source problems. Recent efforts incorporating multigroup kernels to the MOC solvers in MPACT have reduced runtime by roughly $2{\times}$. Applying the same concepts for self-shielding and developing a novel lumped parameter approach to MOC, substantial improvements have also been made to the self-shielding computational efficiency without sacrificing any accuracy. These new multigroup and lumped parameter capabilities have been demonstrated on two test cases: (1) a single lattice with quarter symmetry known as VERA (Virtual Environment for Reactor Applications) Progression Problem 2a and (2) a two-dimensional quarter-core slice known as Problem 5a-2D. From these cases, self-shielding computational time was reduced by roughly $3-4{\times}$, with a corresponding 15-20% increase in overall memory burden. An azimuthal angle sensitivity study also shows that only half as many angles are needed, yielding an additional speedup of $2{\times}$. In total, the improvements yield roughly a $7-8{\times}$ speedup. Given these performance benefits, these approaches have been adopted as the default in MPACT.

Validation of UNIST Monte Carlo code MCS using VERA progression problems

  • Nguyen, Tung Dong Cao;Lee, Hyunsuk;Choi, Sooyoung;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.878-888
    • /
    • 2020
  • This paper presents the validation of UNIST in-house Monte Carlo code MCS used for the high-fidelity simulation of commercial pressurized water reactors (PWRs). Its focus is on the accurate, spatially detailed neutronic analyses of startup physics tests for the initial core of the Watts Bar Nuclear 1 reactor, which is a vital step in evaluating core phenomena in an operating nuclear power reactor. The MCS solutions for the Consortium for Advanced Simulation of Light Water Reactors (CASL) Virtual Environment for Reactor Applications (VERA) core physics benchmark progression problems 1 to 5 were verified with KENO-VI and Serpent 2 solutions for geometries ranging from a single-pin cell to a full core. MCS was also validated by comparing with results of reactor zero-power physics tests in a full-core simulation. MCS exhibits an excellent consistency against the measured data with a bias of ±3 pcm at the initial criticality whole-core problem. Furthermore, MCS solutions for rod worth are consistent with measured data, and reasonable agreement is obtained for the isothermal temperature coefficient and soluble boron worth. This favorable comparison with measured parameters exhibited by MCS continues to broaden its validation basis. These results provide confidence in MCS's capability in high-fidelity calculations for practical PWR cores.

Verification of Reduced Order Modeling based Uncertainty/Sensitivity Estimator (ROMUSE)

  • Khuwaileh, Bassam;Williams, Brian;Turinsky, Paul;Hartanto, Donny
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.968-976
    • /
    • 2019
  • This paper presents a number of verification case studies for a recently developed sensitivity/uncertainty code package. The code package, ROMUSE (Reduced Order Modeling based Uncertainty/Sensitivity Estimator) is an effort to provide an analysis tool to be used in conjunction with reactor core simulators, in particular the Virtual Environment for Reactor Applications (VERA) core simulator. ROMUSE has been written in C++ and is currently capable of performing various types of parameter perturbations and associated sensitivity analysis, uncertainty quantification, surrogate model construction and subspace analysis. The current version 2.0 has the capability to interface with the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) code, which gives ROMUSE access to the various algorithms implemented within DAKOTA, most importantly model calibration. The verification study is performed via two basic problems and two reactor physics models. The first problem is used to verify the ROMUSE single physics gradient-based range finding algorithm capability using an abstract quadratic model. The second problem is the Brusselator problem, which is a coupled problem representative of multi-physics problems. This problem is used to test the capability of constructing surrogates via ROMUSE-DAKOTA. Finally, light water reactor pin cell and sodium-cooled fast reactor fuel assembly problems are simulated via SCALE 6.1 to test ROMUSE capability for uncertainty quantification and sensitivity analysis purposes.

REDISCUSSION OF PER100 CHANGE OF THE CLOSE BINARY V65l CASSIOPEIAE (근접쌍성 V651 Cas의 공전주기 변화의 재논의)

  • 김천휘;이재우;이충욱;이동주;강영운
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.1
    • /
    • pp.47-56
    • /
    • 2002
  • Observations of times of minimum lights of the eclipsing binary V65l Cas were carried out on the three nights from November 21-23, 2000. From our observations a total of seven new times of minimum lights was obtained. Through the analysis of photoelectric and CCD times of minima of V65l Cas including ours, the light time orbit due to a third body, which was propose by Kim & Lee (2000), was confirmed and improved. The resultant values for the period, semi-amplitude, and eccentricity of the light-time orbit were $6.^{y}3,\;0.^{d}0013$, and 0.78, respectively. The deduced marts range of the third body is . If the third body is $0.09M_{\odot}\;{\leq}\;M_3\;{\leq}\;0.20M_{\odot}\;for\;i_3\;{\geq}\;30^{\circ}$. If the third body suggested in V65l Cas system exists really and is a main-sequence star, it is located at the end of the main-sequence.

Pseudo Continuous Arterial Spin Labeling MR Imaging of Status Epilepticus (간질중첩증의 동맥 스핀 라벨링 자기공명영상)

  • Yi, Min-Kyung;Choi, Seung-Hong;Jung, Keun-Hwa;Yoon, Tae-Jin;Kim, Ji-Hoon;Sohn, Chul-Ho;Chang, Kee-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.2
    • /
    • pp.142-151
    • /
    • 2012
  • Purpose : The purpose of this study was to describe arterial spin labeling MR image findings of status epilepticus. Materials and Methods: A retrospective chart review within our institute revealed six patients who had been clinically diagnosed as status epilepticus and had also undergone MR imaging that included ASL in addition to routine sequences. Results: Six patients with status epilepticus were studied by conventional MR and arterial spin labeling imaging. All patients showed increased regional CBF correlating with EEG pathology. Notably, in two patients, conventional MRI and DWI showed no abnormal findings whereas pCASL demonstrated regional increased CBF in both patients. Conclusion: Arterial spin labeling might offer additional diagnostic capabilities in the evaluation of patients with status epilepticus.