Preventing the traffic accident by accurately predicting it in advance can greatly improve road traffic safety. The accurate traffic accident prediction model requires not only understanding of the factors that cause the accident but also having the transferability of the model. So, this paper suggest the traffic accident diagram using CART(Classification And Regression Tree) analysis, developed Model is compared with the existing accident prediction models in order to test the goodness of fit. The results of this study are summarized below. First, traffic accident prediction model using CART analysis is developed. Second, distance(D), pedestrian shoulder(m) and traffic volume among the geometrical factors are the most influential to the traffic accident. Third. CART analysis model show high predictability in comparative analysis between models. This study suggest the basic ideas to evaluate the investment priority for the road design and improvement projects of the traffic accident blackspots.
Buyer-carts to support the purchasing process in the B2B EC platform, can be categorized as s-cart, i-cart, and b-cart depending upon its residing sites : seller, intermediary, and buyer sites. In this paper, after proposing the desired features of buyer-carts in B2B EC as identification, collection, trashing, ordering, payment, tracking, recording, purchasing decision support, and transmission of records to e-procurement systems, we try to analyze each buyer-cart qualitatively from such viewpoints. Moreover, we propose an efficiency evaluation model for quantitative analysis. By setting variables from interview of employees in 30 listed companies In Korea, we try to evaluate the efficiency of buyer-carts in B2B EC. From this paper, we show that the b-cart platform is more efficient than other buyer-carts especially in B2B EC.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.10
no.4
/
pp.157-162
/
2010
The cart-pole balancing problem is a pseudo-standard benchmark problem from the field of control methods including genetic algorithms, artificial neural networks, and reinforcement learning. In this paper, we propose a novel approach by using online reinforcement learning(OREL) to solve this cart-pole balancing problem. The objective is to analyze the learning method of the OREL learning system in the cart-pole balancing problem. Through experiment, we can see that approximate faster the optimal value-function than Q-learning.
Even though B2B EC is becoming popular, there have been not so much studies about performance evaluation methodology for B2B systems. In this paper, after analyzing buyer-carts systematically focusing on the buyer's interactional efforts on the typical buying processes of each buyer-cart, we propose a quantitative performance evaluation model. For this, we categorize buyer-carts in B2B EC as s-cart, i-cart, and b-cart depending upon its residing sites: seller, intermediary, and buyer sites. And after proposing the desired features of buyer-carts in B2B EC as identification, collection, trashing, ordering, payment, tracking, recording, purchasing decision support, and transmission of records to e-procurement systems, we derive a performance evaluation model by calculating detail sub-processes from the desired features' viewpoints. By setting variables from a survey on the actual condition of using buyer-carts in companies in Korea, we try to evaluate the performance of buyer-carts in B2B EC. In this paper, we suggest a new methodology of performance evaluation for B2B systems, and show that the b-cart platform is more efficient than other buyer-carts especially in B2B EC.
The occurrence of toothache signals the malfunction in oral health, which allows the detection of any abnormal condition in the oral cavity at an early stage to prevent the condition from worsening, and thus can act as a preventive measure. This study has looked into the status of oral health management in relation to toothache through the structured survey administered to 235 college students. Based on the survey results, this study aimed at comparing the toothache occurrence prediction between regression analysis and CART model in order to clarify the relationship between the factors of oral health management habits that contribute to toothache occurrence. According to the result, there was a difference between the present health status and the health status of the past year depending on the presence or non-presence of toothache occurrence (p<0.05). There was a difference in the regularity of meal time depending on the presence non-presence of toothache occurrence from the dietary habits of the research subjects (p<0.05). As for the presence or non-presence of toothache occurrence from the oral hygiene habits of the research subject, there was a difference between the occurrence and nonoccurrence of bleeding during brushing or flossing (p<0.05). According to the results of regression analysis, no factors were signifiant in the relationship with the presence or non-presence of toothache occurrence from the status of life habits and oral hygiene habits. 70% of the researched group was randomly selected as the sample for generating an analytical model and the remaining 30% was used as the sample for generating an evaluation model. According to the results of CART model, the occurrence of toothache was higher in the case of irregular meal time and poor current health condition than the case of average or satisfactory health condition. The above results imply that CART model is very useful technique in predicting toothache occurrence compared to regression analysis, and suggests that CART model could be very useful in predicting other oral diseases including toothache.
The Transactions of the Korea Information Processing Society
/
v.3
no.6
/
pp.1468-1472
/
1996
In this study, the performance of the CART(Classification and Regression Tree) is compared with that of discriminant analysis method. In most experiments using bank data, discriminant analysis shows better performance in terms of the total cost. In contrast, most experiments using insurance data show that the CART is better than discriminant analysis in terms of the total cost. The contradictory result are analysed by using the characteristics of the data sets. The performances of both the Classification and Regression Tree and discriminant analysis depend on the parameters:failure prior probability, data used, type I error, type II error cost, and validation method.
In this article, data mining simulation is applied to find a proper approach and results of analysis for study of variables related to organization. Also, turnover intention and organizational commitment are used as target (dependent) variables in this simulation. Classification and regression tree (CART) with ensemble methods are used in this study for simulation. Human capital corporate panel data of Korea Research Institute for Vocation Education & Training (KRIVET) is used. The panel data is collected in 2005, 2007, and 2009. Organizational commitment variables are analyzed with combined measure variables which are created after investigation of reliability and single dimensionality for multiple-item measurement details. The results of this study are as follows. First, major determinants of turnover intention are trust, communication, and talent management-oriented trend. Second, the main determining factors for organizational commitment are trust, the number of years worked, innovation, communication. CART with ensemble methods has two ensemble CART methods which are CART with Bagging and CART with Arcing. Comparing two methods, CART with Arcing (Arc-x4) extracted scenarios with very high coefficients of determination. In this study, a scenario with maximum coefficient of determinant and minimum error is obtained and practical implications are presented. Using one of data mining methods, CART with ensemble method. Also, the limitation and future research are discussed.
B2B EC 플랫폼에서의 구매 프로세스를 지원하기 위한 구매자 쇼핑카트는 위치에 따라 판매자쪽의 s-cart, 중개자쪽의 i-cart, 구매자쪽의 b-cart로 분류할 수 있다. 본 논문에서는 B2B EC에서의 구매자 쇼핑카트의 요구기능을 사용자 식별, 상품정보수집, 물품정보제거, 주문처리, 지불처리, 진행사항 추적, 구매기록, 구매의사결정지원, 전자구매시스템에 구매기록 전송 등 9 가지로 제시하고, 이러한 관점에서 각 구매자 쇼핑카트에 대한 정성적인 비교 분석을 시도한다. 그리고 효율평가모델 제시를 통한 정량적인 분석과 상장기업 30개사의 구매직원에 대한 인터뷰를 통한 변수값 설정을 통해서 B2B EC환경에서의 구매자 쇼핑카트의 효율성 평가를 시도한다. 본 논문을 통해서 B2B EC환경에서는 b-cart 방식의 구매자쇼핑카트 방법이 효율적인 플랫폼임을 제시한다.
Kim, Tae-Ho;Lee, Yong- Taeck;Hwang, E-Pyo;Won, Jai-Mu
Journal of the Korean Society for Railway
/
v.11
no.3
/
pp.216-224
/
2008
In general, based on criteria of subway law, radius 500m from subway station is defined as SIA(Subway Station Influence Area). Therefore, in this paper, selection models of SIA are developed to identify appropriate SIA for recently developed 4 new towns based based on CART analysis. As a result, following outputs are obtained; (1) walking distance from subway station is the most influential factor to define SIA (2) SIAs vary with new towns (i.e., bundang city: 856m, ilsan sanbon city 508m, pyungchon city 495m), and (3) walking distance from subway station is influential to land price of SIA. In addition, bundang and pyungchon new town are more affected in land price and walking distance. Therefore, it is desirable for current definition of SIA (radius 500m from subway station) to reflect characteristics of land use and walking distance in the new towns.
Communications for Statistical Applications and Methods
/
v.17
no.5
/
pp.667-678
/
2010
It is important to detect the gene-gene interaction in GWAS(Genome-Wide Association Study). There are many studies about detecting gene-gene interaction. The one is Multifactor dimensionality reduction method. But MDR method is not applied continuous data and expanded multifactor dimensionality reduction(E-MDR) method is suggested. The goal of this study is to evaluate the power of E-MDR for identifying gene-gene interaction by simulation. Also we applied the method on the identify interaction e ects of single nucleotid polymorphisms(SNPs) responsible for economic traits in a Korean cattle population (real data).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.