• Title/Summary/Keyword: CANDU Reactor

Search Result 206, Processing Time 0.02 seconds

3-D CFD Analysis of the CANDU-6 Moderator Circulation Under Nnormal Operating Conditions

  • Yoon, Churl;Rhee, Bo-Wook;Min, Byung-Joo
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.559-570
    • /
    • 2004
  • A computational fluid dynamics model for predicting moderator circulation inside the Canada deuterium uranium (CANDU) reactor vessel has been developed to estimate the local subcooling of the moderator in the vicinity of the calandria tubes. The buoyancy effect induced by the internal heating is accounted for by the Boussinesq approximation. The standard $k-{\varepsilon}$ turbulence model with logarithmic wall treatment is applied to predict the turbulent jet flows from the inlet nozzles. The matrix of the calandria tubes in the core region is simplified to a porous media in which the anisotropic hydraulic impedance is modeled using an empirical correlation of pressure loss. The governing equations are solved by DFX-4.4, a commercial CFD code developed by AEA technology. The resultant flow patterns of the constant-z slices containing the inlet nozzles and the outlet port are "mined-type", as observed in the former 2-dimensional experimental investigations. With 103% full power for conservatism, the maximum temperature of the moderator is $82.9^{\circ}C$ at the top of the core region. Considering the hydrostatic pressure change, the minimum subcooling is $24.8^{\circ}C$.

A way Analyzing Oxide Layer on an Irradiated CANDU-PHWR Pressure Tube Using an EPMA and X-ray Image Mapping

  • Jung, Yang Hong;Kim, Hee Moon
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.118-128
    • /
    • 2021
  • The oxide layer in samples taken from an irradiated Zr-2.5Nb pressure tube from a CANDU-PHWR reactor was analyzed using electron probe microanalysis (EPMA). The examined tube had been exposed to temperatures ranging from 264 to 306 ℃ and a neutron fluence of 8.9 × 1021 n/cm2 (E > 1 MeV) for the maximum 10 effective full-power years in a nuclear power plant. Measuring oxide layer thickness generally employs optical microscopy. However, in this study, analysis of the oxide layer from the irradiated pressure tube components was undertaken through X-ray image mapping obtained using EPMA. The oxide layer characteristics were analyzed by X-ray image mapping with 256 × 256 pixels using EPMA. In addition, the slope of the oxide layer was measured for each location. A particular advantage of this study was that backscattered electrons and X-ray image mapping were obtained at a magnification of 9,000 when 20 kV volts and 30 uA of current were applied to radiation-shielded EPMA. The results of this study should usefully contribute to the study of the oxide layer properties of various types of metallic materials irradiated by high radiation in nuclear power plants.

BEPU analysis of a CANDU LBLOCA RD-14M experiment using RELAP/SCDAPSIM

  • A.K. Trivedi;D.R. Novog
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1448-1459
    • /
    • 2023
  • A key element of the safety analysis is Loss of Coolant Analysis (LOCA) which must be performed using system thermal-hydraulic codes. These codes are extensively validated against separate effect and integral experiments. RELAP/SCDAPSIM is one such code that may be used to predict LBLOCA response in a CANDU reactor. The RD-14M experiment selected for the Best Estimate Plus Uncertainty study is a 44 mm (22.7%) inlet header break test with no Emergency Coolant Injection. This work has two objectives first is to simulate pipe break with RELAP and compare these results to those available from experiment and from comparable TRACE calculations. The second objective is to quantify uncertainty in the fuel element sheath (FES) temperature arising from model coefficient as well as input parameter uncertainties using Integrated Uncertainty Analysis package. RELAP calculated results are found to be in good agreement with those of TRACE and with those of experiments. The base case maximum FES temperature is 335.5 ℃ while that of 95% confidence 95th percentile is 407.41 ℃ for the first order Wilk's formula. The experimental measurements fall within the predicted band and the trends and sensitivities are similar to those reported for the TRACE code.

Fuel Composition Heterogeneity Effect for DUPIC Core

  • Park, Hangbok;Bo W. Rhee;Park, Hyunsoo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.109-114
    • /
    • 1995
  • A preliminary study of the heterogeneity effect of spent P% fuel in CANDU was made using a reduced spent PWR fuel data base. The instantaneous core simulation has shown that the refueling ripple in the CANDU reactor is large if the spent PWR fuel is directly used. But the fuel heterogeneity effect can be reduced appreciably by blending spent PWR fuel with a small amount of fresh UO$_2$. The refueling simulation has shown that the operating margins of 6.0% and 8.7% are achievable for the peak channel and bundle powers, respectively, with the blended fuel.

  • PDF

A Study on the Micro-Focus X-Ray Inspection for Confirming the Soundness of End Closure Weld of DUPIC Fuel Elements (DUPIC 핵연료봉 봉단 용접부 건전성 확인을 위한 미세초점 X-선 투과시험에 관한 연구)

  • 김웅기;김수성;이정원;양명승
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.88-94
    • /
    • 2001
  • DUPIC (Direct use of spent PWR fuel in CANDU reactors) nuclear fuel is a CANDU fuel fabricated remotely from spent PWR fuel materials in a hot cell. The soundness of the end closure welds of nuclear fuel elements is an important factor for the safety and performance of nuclear fuel. To evaluate the soundness of the end closure welds of DUPIC fuel element, a precise X-ray inspection system is developed using a micro-focus X-ray generator with an image intensifier and a real time camera system. The fuel elements made of Zircaloy-4 and stainless steel by an Nd:YAG laser welding and a TIG welding aye inspected by the developed inspection system. The soundness of the welds of the fuel elements was confirmed by the X-ray inspection process, and the irradiation test of DUPIC fuel elements has been successfully completed at the HANARO research reactor.

  • PDF

A Study on the Database Design using Software Requirement Analysis (소프트웨어 요구사항을 이용한 데이터베이스 설계 사례에 관한 연구)

  • Park, Dae-Yu;Lee, Sang-Hoon;Kim, Eung-Gon;Yeom, Choong-Sub
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.277-281
    • /
    • 2006
  • 본 연구는 중수로형(CANDU) 원자력발전소의 노심 관리(Nuclear Reactor Core Management) 업무 자동화를 위한 소프트웨어 시스템 개발 사례이다. 중수로형(CANDU) 원자력 발전소의 노심관리 업무자동화 통합시스템을 개발하기 위해서는 현업에서 사용되고 있는 공학적 계산 인자들과 그 결과를 체계적으로 관리하기 위한 데이터베이스의 구축이 우선되어야 한다. 이에 본 연구에서는 원자력발전소의 노심관리 업무에 대해 현업 업무 분석을 통해 사용자의 요구사항을 정확히 분석하고 이를 토대로 업무를 효과적이며 체계적으로 정의한 데이터베이스를 구축하기 위해 IEEE 830 템플릿 중 소프트웨어 요구사항 분석 방법을 적용하여 현업 프로세스별 입, 출력 사양을 분석하고 각 항목간의 관계를 정의하여 요구사항 분석 단계에서 데이터베이스 설계요소를 효과적으로 도출하기 위한 연구 사례를 소개한다.

  • PDF

Structural Analysis of CANFLEX Fuel Bundles

  • H. Y. Kang;K. S. Sim;Lee, J. H.;Kim, T. H.;J. S. Jun;C. H. Chung;Park, J. H.;H. C. Suk
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.1008-1013
    • /
    • 1995
  • The CANFLEX fuel bundle has been developed by KAERI/AECL jointly to facilitate the use of various fuel cycles in CANDU-6 reactor. As one of the design evaluations, the structural analysis of the fuel bundles by hydraulic drag force is performed to evaluate the fuel integrity in the period of the refuelling in CANDU-6. The structural integrity is evaluated by FEM modelling for the complicated bundles configuration in channel. It is noted that the present analysis method is newly developed for the structural integrity evaluation. The analysis results show that the fuel bundle is shown to keep its structural integrity during the refuelling.

  • PDF

Modelling of CANDU NPP Reactor Regulating System using CATHENA

  • Cho, Cheon-Hwey;Kim, Hee-Cheol;Park, Chul-Jin;Lee, Sang-Yong;A.C.D. Wright
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.579-585
    • /
    • 1996
  • A CATHENA model for the reactor regulating system is developed and tested independently. A CATHENA plant model is created by combining this model with the reference CATHENA model which has been developed to analyze a loss-of-coolant accident (LOCA) for the Wolsong 2 generating station. This model is intended to provide a trip coverage analysis capability. The CATHENA reactor regulating system model includes the demand power routine. the light water zone control absorbers, mechanical control absorbers and adjusters. The CATHENA model is tested for steady state at 103% full power. A postulated accident transient (small LOCA) was also tested. The results show that the control routines in CATHENA were set up properly.

  • PDF

Numerical Calculation of λ-Mode of the Diffusion Equation (수치해법을 이용한 중성자 확산방정식의λ-Mode 계산)

  • Noh, T.W.;Oh, S.K.;Kim, S.Y.;Kim, C.H.
    • Nuclear Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.310-316
    • /
    • 1987
  • A successive iteration method to calculate the λ-modes of the diffusion equation was developed. The 2-group, 3-dimensional computer code MOGEN was developed to implement this method, The accuracy of the method was demonstrated using 2-dimensional bare homogeneous rectangular reactor. The numerical solution shows good agreement with the analytic solution in terms of eigenvalue and eigenfunction As for the standard CANDU-600 reactor, the 2-dimensional modes were generated and these represent the conventional mode characteristics well. Finally, application of theλ-mode in reactor engineering problems is described briefly.

  • PDF

Development of CANDU Pressure Tube Integrity Evaluation System;Its Application to Sharp Flaw and Blunt Notch (CANDU 압력관에 대한 건전성 평가시스템 개발;예리한 결함 및 둔한 노치에의 적용)

  • Gwak, Sang-Rok;Lee, Jun-Seong;Kim, Yeong-Jin;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.206-214
    • /
    • 2000
  • The pressure tube is a major component of the CANDU reactor, which supports nuclear fuel bundle and it's containment vessel. If a flaw is found during the periodic inspection from the pressure tube s. the integrity evaluation must be carried out. and the safety requirements must be satisfied for continued service. In order to complete the integrity evaluation, complicated and iterative calculation procedures are required. Besides, a lot of data and knowledge for the evaluation are required for the entire: integrity evaluation process. For this reason. an integrity evaluation system, which provides efficient of evaluation with the help of attached databases, was developed. The developed system was built on the basis of ASME Sec. XI and FFSG(Fitness For Service Guidelines for zirconium alloy pressure tubes in operating CANDU reactors) issued by the AECL, and covers the delayed hydride cracking(DHC). This system does not only provide various databases including the 3-D finite element analysis results on pressure tubes, inspection data and design specifications but also is compatible with other commercial database software. In order to verify the developed system, several case studies have been performed and the results were compared with those from AECL. A good agreement was observed between those two results.