• Title/Summary/Keyword: CANDU Reactor

Search Result 206, Processing Time 0.031 seconds

Ultrasonic Measurement of Gap between Calandria Tube and Liquid Injection Nozzle in CANDU Reactor (초음파를 이용한 중수로내 칼란드리아관과 원자로 정지물질 주입관과의 간격 측정)

  • Sohn, Seok-Man;Kim, Tae-Rong;Lee, Jun-Sin;Lee, Young-Hee;Park, Chul-Hun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.834-839
    • /
    • 2001
  • Calandria tube wrapping each pressure tube is one of the key structural components of CANDU reactor(Calandria) which is consisted of many pressure tubes containing nuclear fuel assemblies. As the Calandria tube(made of zirconium alloy) is sagging due to its thermal and irradiation creep during the plant operation, it possibly contacts with liquid injection nozzle crossing beneath the Calandria tube, which subsequently results in difficulties on the safe operation. It is therefore necessary to check the gap for the confirmation of no contacts between the two tubes, Calandria tube and liquid injection tube, with a proper measure during the life of plant. In this study, an ultrasonic measurement method was selected among several methods investigated. The ultrasonic device being developed for the measurement of the gap was introduced and its preliminary performance test results were presented here. The gap between LIN and CT at site was measured using by this ultrasonic device at site.

  • PDF

A Review of Pressure Tube Failure Accident in the CANDU Reactor and Methods for Improving Reactor Performance

  • Yoo, Ho-Sik;Chung, Jin-Gon
    • Nuclear Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.262-272
    • /
    • 1998
  • The experiences and causes of pressure tube cracking accidents in the CANDU reactors and the development of the fuel channel at AECL(Atomic Energy Canada Limited) have been described. Most of the accidents were caused by Delayed Hydride Cracking(DHC). In the cases of the Pickering units 3&4 and the Bruce unit 2, excessive residual stresses induced by an improper rolled joint process played a role in DHC. In the Pickering unit 2, cracks formed by contact between the pressure and calandria tubes due to the movement of the garter spring were the direct cause of the failure. To extend the life of a fuel channel, several R&D programs examining each component of the fuel channel have been carried out in Canada. For a pressure tube, the main concern is focused on changing the fabrication processes, e.g., increasing cold working rate, conducting intermediate annealing and adding a third element like Fe, V, and Cr to the tube material. In addition to them, chromium plating on the end fitting and increasing wall thickness at both ends of the calandria tube are considered. There has also been much interest in the improvement of fuel channel performance in our country and several development programs are currently under way.

  • PDF

PREDICTIONS OF CRITICAL HEAT FLUX USING THE ASSERT-PV SUBCHANNEL CODE FOR A CANFLEX VARIANT BUNDLE

  • Onder, Ebru Nihan;Leung, Laurence Kim-Hung;Rao, Yanfei
    • Nuclear Engineering and Technology
    • /
    • v.41 no.7
    • /
    • pp.969-978
    • /
    • 2009
  • The ASSERT-PV subchannel code developed by AECL has been applied as a design-assist tool to the advanced $CANDU^{(R)1}$ reactor fuel bundle. Based primarily on the $CANFLEX^{(R)2}$ fuel bundle, several geometry changes (such as element sizes and pitch-circle diameters of various element rings) were examined to optimize the dryout power and pressure-drop performances of the new fuel bundle. An experiment was performed to obtain dryout power measurements for verification of the ASSERT-PV code predictions. It was carried out using an electrically heated, Refrigerant-134a cooled, fuel bundle string simulator. The axial power profile of the simulator was uniform, while the radial power profile of the element rings was varied simulating profiles in bundles with various fuel compositions and burn-ups. Dryout power measurements are predicted closely using the ASSERT-PV code, particularly at low flows and low pressures, but are overpredicted at high flows and high pressures. The majority of data shows that dryout powers are underpredicted at low inlet-fluid temperatures but overpredicted at high inlet-fluid temperatures.

Preliminary Study on the Internal Dosimetry Program for Carbon-14 at Korean CANDU Reactors (중수로원전에서 발생하는 $^{14}C$에 대한 내부피폭 선량평가 프로그램에 관한 예비 조사)

  • Kong T.Y.;Kim H.C.;Park G.;Hang D.W.;Lee G.J.;Lee S.K.;Park S.C.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.317-320
    • /
    • 2005
  • More strict radioactive regulations are applied to Korean nuclear power plants (NPPs) since ICRP-60 recommendation for radiation protection and has been enforced since 2003. In particular. carbon-14 and tritium concentrations are significantly higher at CANDU reactors compared to PWR reactors and this increases the risk of internal radiation exposure to workers at CANDU NPPs. Thus, it is necessary to estimate the exact amount of internal radiation exposure to workers fur radiological protection at CANDU reactors. In this paper, the current dosimetry method for carbon-14 is analyzed for the establishment of internal dosimetry for carbon-14 at domestic NPPs.

  • PDF

Monte Carlo Calculation of Thermal Neutron Flux Distribution for (n, v) Reaction in Calandria (몬테칼로 코드를 이용한 중수로 Calandria에서의 $(n,\;{\gamma})$ 반응유발 열중성자속분포 계산)

  • Kim, Soon-Young;Kim, Jong-Kyung;Kim, Kyo-Youn
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.1
    • /
    • pp.13-22
    • /
    • 1994
  • The MCNP 4.2 code was used to calculate the thermal neutron flux distributions for $(n,\;{\gamma})$reaction in mainshell, annular plate, and subshell of the calandria of a CANDU 6 plant during operation. The thermal neutron flux distributions in calandria mainshell, annular plate, and subshell were in the range of $10^{11}{\sim}10^{13}\;neutrons/cm^2-sec$ which is somewhat higher than the previous estimates calculated by DOT 4.2 code. As an application to shielding analysis, photon dose rates outside the side and bottom shields were calculated. The resulting dose rates at the reactor accessible areas were below design target, $6 {\mu}Sv/h$. The methodology used in this study to evaluate the thermal neutron flux distribution for $(n,\;{\gamma})reaction$ can be applied to radiation shielding analysis of CANDU 6 type plants.

  • PDF

Design of a direct-cycle supercritical CO2 nuclear reactor with heavy water moderation

  • Petroski, Robert;Bates, Ethan;Dionne, Benoit;Johnson, Brian;Mieloszyk, Alex;Xu, Cheng;Hejzlar, Pavel
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.877-887
    • /
    • 2022
  • A new reactor concept is described that directly couples a supercritical CO2 (sCO2) power cycle with a CO2-cooled, heavy water moderated pressure tube core. This configuration attains the simplification and economic potential of past direct-cycle sCO2 concepts, while also providing safety and power density benefits by using the moderator as a heat sink for decay heat removal. A 200 MWe design is described that heavily leverages existing commercial nuclear technologies, including reactor and moderator systems from Canadian CANDU reactors and fuels and materials from UK Advanced Gas-cooled Reactors (AGRs). Descriptions are provided of the power cycle, nuclear island systems, reactor core, and safety systems, and the results of safety analyses are shown illustrating the ability of the design to withstand large-break loss of coolant accidents. The resulting design attains high efficiency while employing considerably fewer systems than current light water reactors and advanced reactor technologies, illustrating its economic promise. Prospects for the design are discussed, including the ability to demonstrate its technologies in a small (~20 MWe) initial system, and avenues for further improvement of the design using advanced technologies.

Development of CANDU Pressure Tube Integrity Evaluation System : Its Application to Delayed Hydride Cracking and Blister (CANDU 압력관에 대한 건선성평가 시스템 개발-지체수소균열 및 블러스터 평가에의 적용)

  • 곽상록;이준성;김영진;박윤원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.174-182
    • /
    • 2002
  • The integrity evaluation of pressure tube is essential for the safety of CANDU reactor, and integrity must be assured when flaws or contacts between pressure tube and surrounding calandria tube are found. In order to complete the integrity evaluation, not only complicated and iterative calculation procedures but also a lot of data and knowledge are required. For this reason, an integrity evaluation system, which provides an efficient way of the evaluation with the help of attached databases, was developed. The developed system was built on the basis of ASME Sec.? and FFSG issued by the AECL, and applicable for the evaluation of blister, sharp flaw and blunt notch. Delayed hydride cracking and blister evaluation modules are included in the general flaw and notch evaluation module. In order to verify the developed system, several case studies have been performed and the results were compared with those from AECL. A good agreement was observed between those two results.

SAFETY ANALYSIS METHODOLOGY FOR AGED CANDU® 6 NUCLEAR REACTORS

  • Hartmann, Wolfgang;Jung, Jong Yeob
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.581-588
    • /
    • 2013
  • This paper deals with the Safety Analysis for $CANDU^{(R)}$ 6 nuclear reactors as affected by main Heat Transport System (HTS) aging. Operational and aging related changes of the HTS throughout its lifetime may lead to restrictions in certain safety system settings and hence some restriction in performance under certain conditions. A step in confirming safe reactor operation is the tracking of relevant data and their corresponding interpretation by the use of appropriate thermal-hydraulic analytic models. Safety analyses ranging from the assessment of safety limits associated with the prevention of intermittent fuel sheath dryout for a slow Loss of Regulation (LOR) analysis and fission gas release after a fuel failure are summarized. Specifically for fission gas release, the thermal-hydraulic analysis for a fresh core and an 11 Effective Full Power Years (EFPY) aged core was summarized, leading to the most severe stagnation break sizes for the inlet feeder break and the channel failure time. Associated coolant conditions provide the input data for fuel analyses. Based on the thermal-hydraulic data, the fission product inventory under normal operating conditions may be calculated for both fresh and aged cores, and the fission gas release may be evaluated during the transient. This analysis plays a major role in determining possible radiation doses to the public after postulated accidents have occurred.