• Title/Summary/Keyword: CAD surface data

Search Result 216, Processing Time 0.028 seconds

AUTOMATED TRIANGULAR SURFACE GRID GENERATION ON CAD SURFACE DATA (CAD 형상 데이터를 이용한 물체 표면 삼각형 격자의 자동 생성 기법)

  • Lee, B.J.;Kim, B.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.103-107
    • /
    • 2007
  • Computational Fluid Dynamics (CFD in short) approach is now playing an important role in the engineering process recently. Generating proper grid system for the region of interest in time is prerequisite for the efficient numerical calculation of flow physics using CFD approach. Grid generation is, however, usually considered as a major obstacle for a routine and successful application of numerical approaches in the engineering process. CFD approach based on the unstructured grid system is gaining popularity due to its simplicity and efficiency for generating grid system compared to the structured grid approaches. In this paper an automated triangular surface grid generation using CAD surface data is proposed According to the present method, the CAD surface data imported in the STL format is processed to identify feature edges defining the topology and geometry of the surface shape first. When the feature edges are identified, node points along the edges are distributed. The initial fronts which connect those feature edge nodes are constructed and then they are advanced along the CAD surface data inward until the surface is fully covered by triangular surface grid cells using Advancing Front Method. It is found that this approach can be implemented in an automated way successfully saving man-hours and reducing human-errors in generating triangular surface grid system.

  • PDF

AUTOMATIC GENERATION OF UNSTRUCTURED SURFACE GRID SYSTEM USING CAD SURFACE DATA (CAD 형상 데이터를 이용한 비정렬 표면 격자계의 자동 생성 기법)

  • Lee, B.J.;Kim, B.S.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.68-73
    • /
    • 2007
  • Computational Fluid Dynamics (CFD) approach is now playing an important role in the engineering process in these days. Generating proper grid system in time for the region of interest is prerequisite for the efficient numerical calculation of flow physics using CFD approach. Grid generation is, however, usually considered as a major obstacle for a routine and successful application of numerical approaches in the engineering process. CFD approach based on the unstructured grid system is gaining popularity due to its simplicity and efficiency for generating grid system compared to the structured grid approaches, especially for complex geometries. In this paper an automated triangular surface grid generation using CAD(Computer Aided Design) surface data is proposed. According to the present method, the CAD surface data imported in the STL(Stereo-lithography) format is processed to identify feature edges defining the topology and geometry of the surface shape first. When the feature edges are identified, node points along the edges are distributed. The initial fronts which connect those feature edge nodes are constructed and then they are advanced along the CAD surface data inward until the surface is fully covered by triangular surface grid cells using Advancing Front Method. It is found that this approach can be implemented in an automated way successfully saving man-hours and reducing human-errors in generating triangular surface grid system.

An Optimization-based Computational Method for Surface Fitting to Update the Geometric Information of An Existing B-Rep CAD Model

  • Louhichi, Borhen;Aifaoui, Nizar;Hamdi, Mounir;BenAmara, Abdelmajid;Francois, Vincent
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • For several years, researchers have focused on improving the integration of the CAD, CAM and Analysis through a better communication between the various analysis tools. This tendency to integrate the CAD/Analysis and automation of the corresponding processes requires data sharing between the various tasks using an integrated product model. We are interested in this research orientation to CAD/CAM/Analysis integration by rebuilding the CAD model (BREP), starting from the Analysis results (deformed mesh). Because this problem is complex, it requires to be split into several complementary parts. This paper presents an original interoperability process between the CAD and CAE. This approach is based on a new technique of rebuilding the CAD surface model (Nurbs, Bezier, etc.) starting from triangulation (meshed surface) as a main step of the BREP solid model. In our work, the advantages of this approach are identified using a centrifugal pump example.

A Two-Phase Approach of Progressive Mesh Reconstruction from Unorganized Point Clouds

  • Zhang, Hongxin;Liu, Hua;Hua, Wei;Bao, Hujun
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.103-112
    • /
    • 2007
  • This paper presents a practical approach for surface reconstruction from unoriented point clouds. Instead of estimating local surface orientation, we first generate a set of depth images from the input point clouds, and a coarse mesh is then generated based on them by space carving techniques. The resultant mesh is progressively refined by local mesh refinement and optimization according to surface distance measure. A manifold mesh approximating the input points within an given tolerance is finally obtained. Our approach is easy to implement, but has the ability to outputs high quality meshes in different resolutions. We show that the proposed approach is not sensitive to several types of data disfigurement and is able to reconstruct models robustly from variance input data.

Surface Reconstruction for Cutting Path Generation on VLM-Slicer (VLM-Slicer에서 절단 경로 생성을 위한 측면 형상 복원)

  • Lee, Sang-Ho;An, Dong-Gyu;Yang, Dong-Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.71-79
    • /
    • 2002
  • A new rapid prototyping process, Variable Lamination Manufacturing using a 4-axis-controlled hotwire cutter and expandable polystyrene foam sheet as a laminating material of the part (VLM-S), has been developed to reduce building time and to improve the surface finish of parts. The objective of this study is to reconstruct the surface of the original 3D CAD model in order to generate mid-slice data using the advancing front technique. The generation of 3D layers by a 4 axis-controlled hot-wire cutter requires a completely different procedure to generate toolpath data unlike the conventional RP CAD systems. The cutting path data for VLM-S are created by VLM-Slicer, which is a special CAD/CAM software with automatic generation of 3D toolpath. For the conventional sheet type system like LOM, the STL file would be sliced into 2D data only. However, because of using the thick layers and a sloping edge with the firstorder approximation between the top and bottom layers, VLM-Slicer requires surface reconstruction, mid-slice, and the toolpath data generation as well as 2D slicing. Surface reconstruction demands the connection between the two neighboring cross-sectional contours using the triangular facets. VLM-S employs thick layers with finite thickness, so that surface reconstruction is necessary to obtain a sloping angle of a side surface and the point data at a half of the sheet thickness. In the process of the toolpath data generation the surface reconstruction algorithm is expected to minimize the error between the ruled surface and the original parts..

S-CODE: A Subdivision Based Coding System for CAD Models

  • Takarada, Yosuke;Takeuchi, Shingo;Kawano, Isao;Hotta, Jun;Suzuki, Hiromasa
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.97-109
    • /
    • 2003
  • A large scale polygon models are often used to approximately represent 3D CAD models in Digital Engineering environment such as DMU (Digital Mockups) and network based collaborative design. However, they are not suitable for distribution on the network and for interactive rendering. We introduce a new coding system based on subdivision schemes called S-CODE system. In this system, it is possible to highly compress the model with sufficient accuracy and to view the model efficiently in a level of detail (LOD) fashion. The method is based on subdivision surface fitting by which a subdivision surface and curves which approximate a face of a CAD model are generated. We also apply a subdivision method to analytic surfaces such as conical and cylindrical surfaces. A prototype system is developed and used for evaluation with reasonably complicated data. The results show that the method is useful as a CAD data coding system.

T-spline Finite Element Method Integrated with CAD (CAD 와의 연동을 고려한 T-스플라인 유한요소해석)

  • Uhm, Tae-Kyoung;Youn, Sung-Kie
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.672-677
    • /
    • 2007
  • Recently, the new finite element method which uses NURBS as shape functions was proposed. It is very promising because it can directly use CAD data to describe geometry and discretize problem domain. In this case, CAE models are not approximated but represent exact geometry. So, it can contribute to more accurate results. In addition, it can greatly reduce CAE costs in that simulation models don't have to be made up independently. But in spite of these advantages, the method using NURBS have also some disadvantages. NURBS surface cannot be refined locally. T-splines are recently developed surface modeling technique. A T-spline surface is a NURBS surface with T-junctions and is defined by a control grid called T-mesh. The T-junctions enable T-spline surfaces to be refined locally. That is, it is possible to add a single control point to a T-spline control grid without propagating an entire row or column of control points and without altering the surface. In this research, the finite element analysis using T-splines is studied. In this analysis, CAD data are used directly for engineering analysis. Some problems with complex geometry are solved. And the results will be compared with ones of conventional FEM.

  • PDF

A Study on Efficient Image Processing and CAD-Vision System Interface (효율적인 화상자료 처리와 시각 시스템과 CAD시스템의 인터페이스에 관한 연구)

  • Park, Jin-Woo;Kim, Ki-Dong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.18 no.2
    • /
    • pp.11-22
    • /
    • 1992
  • Up to now, most researches on production automation have concentrated on local automation, e. g. CAD, CAM, robotics, etc. However, to achieve total automation it is required to link each local modules such as CAD, CAM into a unified and integrated system. One such missing link is between CAD and computer vision system. This thesis is an attempt to link the gap between CAD and computer vision system. In this paper, we propose algorithms that carry out edge detection, thinning and pruning from the image data of manufactured parts, which are obtained from video camera and then transmitted to computer. We also propose a feature extraction and surface determination algorithm which extract informations from the image data. The informations are compatible to IGES CAD data. In addition, we suggest a methodology to reduce search efforts for CAD data bases. The methodology is based on graph submatching algorithm in GEFG(Generalized Edge Face Graph) representation for each part.

  • PDF

A Study on the Construction of CAD/CAM system ; for Machining of Sculptured Surface of Die (금형의 자유곡면 가공용 CAD/CAM SYSTEM 구축에 관한 연구)

  • Koo, Young-Hae;Lee, Dong-Ju;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.96-105
    • /
    • 1992
  • A study on the construction of a CAD/CAM system operated by 16 Bit PC basic language, for machining sculptured surface of die, was carried out. The system consists of 2 steps i.e., process for geometric modelling by wire frame and process for machining data generation. Geometric modelling for sculptured surface is made by the point data fitting, parallel sweeping, normal sweeping and linear connection of cross section curve. Machining data are gained by cutter off-set of geometric model data and machining carried out by DNC. This system is to be proved enough for rough cutting by actual machining experiment. But, for becoming a high level system, another method of cutter off-set has to be regarded and system must be reconstructed by another program language.

  • PDF

A Study on the Application of Reverse Engineering for Impeller using Polynomial Regression (다항식회귀곡선을 통한 임펠러의 역공학 적용에 관한 연구)

  • Hwang J. D.;Jung J. Y.;Jung Y. G.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.103-109
    • /
    • 2004
  • This paper presents a fairing method for reverse engineering of a free-formed surface. Utilizing measured data points, reverse engineering is a useful method to construct a CAD model from physical model. Measured data points should be faired since raw data may have outliers. A fairing algorithm of polynomial regression model generates smooth curves of approximation in this paper. The faired curves are utilized to construct a free-formed surface. For a verifying example, an impeller blade is digitized with a CMM to collect raw data on the surfacce and a CAD model is constructed. This research produces impeller blades with 5-axis machining center through the CAD model and compares them with a physical model. As a result the produced surface modeled with the fairing method gives less error than that without the fairing.