• Title/Summary/Keyword: CAD surface

Search Result 536, Processing Time 0.024 seconds

Application of Surface Area Calculating System for Design of Blank Shape of Deep Drawing Product (디프 드로잉 제품의 블랭크 설계를 위한 표면적 계산 시스템의 적용)

  • 박동환;최병근;박상봉;강성수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.97-105
    • /
    • 2000
  • One of the most important steps to determine the blank shape and dimensions in deep drawing process is to calculate the surface area of the product. In general, the surface area of axisymmetric products is calculated by mathematical or graphical methods. However, in the case of non-axisymmetric products, it is difficult to calculate the exact surface area due to errors as separated components. Fortunately, it is possible for elliptical products to recognize the geometry of the product in the long side and short side by drafting in another two layers on AutoCAD software. So, in this study, a surface area calculating system is constructed for a design of blank shape of deep drawing products. This system consists of input geometry recognition module and three dimensional modeling module, respectively. The suitability of this system is verified by applying to a real deep drawing product. The system constructed in this study would be very useful to reduce lead time and cost for determining the blank shape and dimensions.

  • PDF

An Integrated System for Computer-Aided Design and Manufacturing of Sculptured Surface (자유곡면 가공을 위한 CAD/CAM 시스템)

  • Kim, K.S.;Choi, Y.H.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.1
    • /
    • pp.37-49
    • /
    • 1991
  • This report describes an integrated approach to sculptured surface design and manufacture, and a software package for it on a multi-axis NC milling machine. The integrated software consists of four parts : (1) surface fitting procedure for generating the characteristic polyhedron from 3 dimensional CMM data, (2) surface description for generating the mathematical representation of sculptured surfaces. (3) tool path generation for approximating the surface representation into a sequence of linear cutter paths, and (4) tool control for generating the corresponding joint variable values. This integrated approach is generally applicable to sculptured surface manufacturing where multi-axis milling machines are necessary to produce smooth three-dimensional surfaces.

  • PDF

Multi-axis Milling for Micro-texturing

  • Kobayashi, Yoshikazu;Shirai, Kenji
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.34-38
    • /
    • 2008
  • The surface texture of a product is generally produced by etching or sandblasting. However, these techniques have problems related to repeatability and environmental pollution. Since current milling machines can produce small parts at the micrometer or nanometer level, the resolution of milling exceeds the manufactured dimensions of the surface texture produced by etching or sand-blasting. A method for generating surface texture by milling is proposed and demonstrated. The proposed method was demonstrated by actual milling using a three- or five-axis control machine, and the machined surface texture was measured with an interferometer to allow comparison with the designed shape. The measurement results demonstrate that the proposed method can generate a wide-area surface texture with good machining repeatability.

Virtual Models for 3D Printing

  • Haeseong Jee
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • surface texture denotes set of tiny repetitive geometric features on an object surface. 3D Printing can readily create a surface of controlled macro-textures of high geometric complexity. Designing surface textures for 3D Printing, however, is difficult due to complex macro-structure of the tiny texture geometry since it needs to be compatible with the non-traditioal manufacturing method. In this paper we propose a visual simulation technique involving development of a virtual model-an intermediate geometric model-of the surface texture design prior to fabricating the physical model. Careful examination of the virtual model before the actual fabrication can help minimize unwanted design iterations. The proposed technique demonstrated visualization capability by comparing the virtual model with the physical model for several test cases.

  • PDF

The OMM system for machined form and surface roughness measurement concerned with volumetric error (기계 체적오차가 고려된 가공형상-거칠기 측정 OMM 시스템)

  • 이상준;김선호;김옥현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.681-686
    • /
    • 2000
  • Machining information such as machined form and surface roughness accuracy is an important factor for manufacturing precise parts. To this regard, OMM(On the Machine Measurement) has been issued for last several decades to alternate with CMM. In this research, measuring system consisting of a laser probe is developed for machined form and surface roughness measurement on the machine tool. The obtained machined form accuracy is compared with reference one defined in CAD model. The measured surface roughness data is compared with measured master surface beforehand. Furthermore, using the pre-defined volumetric error map approach compensates the geometric accuracy of the machine tool. The overall performance is compared with CMM, and verified the feasibility of the measurement system.

  • PDF

The OMM System for Machined Form and Surface Roughness Measurement Concerned with Volumetric Error (기계 체적오차가 고려된 가공형상-거칠기 측정 OMM 시스템)

  • 이상준;김선호;김옥현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.232-240
    • /
    • 2000
  • Machining information such as machined form and surface roughness accuracy is an important factor for manufacturing precise parts. To this regard, OMM(On the Machine Measurement) has been issued for last several decades to alternate with CMM. In this research, measuring system consisting of a laser probe is developed for machined form and surface roughness measurement on the machine tool. The obtained machined form accuracy is compared with reference one defined in CAD model. The measured surface roughness data is compared with measured master surface beforehand. Furthermore, using the pre-defined volumetric error map approach compensates the geometric accuracy of the machine tool. The overall performance is compared with CMM, and verified the feasibility of the measurement system.

  • PDF

Measurement and Analysis of the Section Profile for Feature Line Surface on an Automotive Outer Panel (자동차 외판 특징선 곡면의 단면 형상 측정과 분석)

  • Choe, W.C.;Chung, Y.C.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.107-114
    • /
    • 2015
  • The current study presents a geometric measurement and analysis of the section profile for a feature line surface on an automotive outer panel. A feature line surface is the geometry which is a visually noticeable creased line on a smooth panel. In the current study the section profile of a feature line surface is analyzed geometrically. The section profile on the real press panel was measured using a coordinate measuring machine. The section profiles from the CAD model and the real panel are aligned using the same coordinate system defined by two holes near the feature line. In the aligned section profiles the chord length and height of the curved part were measured and analyzed. The results show that the feature line surface on the real panel is doubled in width size.

Accuracy of provisional crowns made using stereolithography apparatus and subtractive technique

  • Kang, Seen-Young;Park, Jung-Hyun;Kim, Ji-Hwan;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.354-360
    • /
    • 2018
  • PURPOSE. To compare and analyze trueness and precision of provisional crowns made using stereolithography apparatus and subtractive technology. MATERIALS AND METHODS. Digital impressions were made using a master model and an intraoral scanner and the crowns were designed with CAD software; in total, 22 crowns were produced. After superimposing CAD design data and scan data using a 3D program, quantitative and qualitative data were obtained for analysis of trueness and precision. Statistical analysis was performed using normality test combined with Levene test for equal variance analysis and independent sample t-test. Type 1 error was set at 0.05. RESULTS. Trueness for the outer and inner surfaces of the SLA crown (SLAC) were $49.6{\pm}9.3{\mu}m$ and $22.5{\pm}5.1{\mu}m$, respectively, and those of the subtractive crown (SUBC) were $31.8{\pm}7.5{\mu}m$ and $14.6{\pm}1.2{\mu}m$, respectively. Precision values for the outer and inner surfaces of the SLAC were $18.7{\pm}6.2{\mu}m$ and $26.9{\pm}8.5{\mu}m$, and those of the SUBC were $25.4{\pm}3.1{\mu}m$ and $13.8{\pm}0.6{\mu}m$, respectively. Trueness values for the outer and inner surfaces of the SLAC and SUBC showed statistically significant differences (P<.001). Precision for the inner surface showed significance (P<.03), whereas that for the outer surface showed no significance (P<.58). CONCLUSION. The study demonstrates that provisional crowns produced by subtractive technology are superior to crowns fabricated by stereolithography in terms of accuracy.

500 lbs-class Air-to-Surface Missile Design by Integration of Aerodynamics and RCS (공력해석과 RCS해석 통합 500 lbs급 공대지 미사일 최적설계)

  • Bae, Hyo-Gil;Lee, Kwang-Ki;Jeong, Jun-O;Sang, Dae-Kyu;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.184-191
    • /
    • 2012
  • Aerodynamic analysis(DATCOM) and radar cross section(RCS) analysis(POFACETS) were integrated for the air-to-surface missile concept design using a design framework. The missile geometry was defined based on the CAD(CATIA) for synchronizing the manufacturing with design processes. Aero/RCS analyses were linked with the CAD process under the ModelCenter framework in order to receive the geometry data automatically. The missile design baseline configuration was selected from ROC(requirement of capability). Then the RCS minimization was performed subject to thelargerthebetter constraint of the missile lift-to-drag ratio. This study demonstrated that various design strategies can be performed efficiently about many missile configurations using this design framework in the missile conceptual design phase.

Producing the insoles for flat feet of senior men using 3D systems based on 3D scanning, 3D modeling, and 3D printing (3D 스캐닝, 3D 모델링, 3D 프린팅 기반의 3D 시스템에 의한 시니어 평발용 인솔 제작)

  • Oh, Seol Young;Suh, Dongae
    • The Research Journal of the Costume Culture
    • /
    • v.25 no.3
    • /
    • pp.270-284
    • /
    • 2017
  • This study aimed to create 3D-printed insoles for flat-footed senior men using 3D systems. 3D systems are product-manufacturing systems that use 3-dimensional technologies like 3D scanning, 3D modeling, and 3D printing. This study used a 3D scanner (NexScan2), 3D CAD programs including Rapidform, AutoCAD, SolidWorks, Nauta+ compiling program, and a 3D printer. In order to create insoles for flat-footed senior men, we analyzed horizontal sections of 3D foot scans We selected 20 flat-footed and 20 normal-footed subjects. To make the 3D insole models, we sliced nine lines on the surface of the subjects' 3D foot scans, and plotted 144 points on the lines. We calculated the average of these 3D coordinates, then located this average within the 3D space of the AutoCAD program and created 3D sole models using the loft surface tools of the SolidWorks program. The sole models for flat feet differed from those of normal feet in the depth of the arch at the inner sideline and the big toe line. We placed the normal-footed sole model on a flat-footed sole model, and the combination of the two models resulted in the 3D insole for flat feet. We printed the 3D modeled insole using a 3D printer. The 3D printing material was an acrylic resin similar to rubber. This made the insole model flexible and wearable. This study utilized 3D systems to create 3D insoles for flat-footed seniors and this process can be applied to manufacture other items in the fashion industry as well.