• Title/Summary/Keyword: CAD Feature

Search Result 211, Processing Time 0.025 seconds

Development of Automatic Feature Recognition System for CAD/CAPP Interface (CAD/CAPP 인터페이스를 위한 형상특징의 자동인식시스템 개발)

  • 오수철;조규갑
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.31-40
    • /
    • 1992
  • This paper presents an automatic feature recognition system for recognizing and extracting feature information needed for the process planning input from a 3D CAD system. A given part is modeled by using the AutoCAD and feature information is automatically extracted from the AutoCAD database. The type of parts considered in this study is prismatic parts composed of faces perpendicular to the X, Y, Z axes and the types of features recognized by the proposed system are through steps, blind steps, through slots, blind slots, and pockets. Features are recognized by using the concept of convex points and concave points. Case studies are implemented to evaluate feasibilities of the function of the proposed system. The developed system is programmed by using Turbo Pascal on the IBM PC/AT on which the AutoCAD and the proposed system are implemented.

Sharing CAD Models Based on Feature Ontology of Commands History

  • Seo, Tae-Sul;Lee, Yoon-Sook;Cheon, Sang-Uk;Han, Soon-Hung;Patil, Lalit;Dutta, Debasish
    • International Journal of CAD/CAM
    • /
    • v.5 no.1
    • /
    • pp.39-47
    • /
    • 2005
  • Different CAx systems are being utilized throughout the product lifecycle due to the practical reasons in the supply chain and design processes. One of the major problems facing enterprises of today is how to share and exchange data among heterogeneous applications. Since different software applications use different terminologies, it is difficult to share and exchange the product data with internal and external partners. This paper presents a method to enhance the CAD model interoperability based on feature ontology. The feature ontology has been constructed based on the feature definition of modeling commands of CAD systems. A method for integration of semantic data has been proposed, implemented, and tested with two commercial CAD systems.

CAD/CAM Integration based on Geometric Reasoning and Search Algorithms (기하 추론 및 탐색 알고리즘에 기반한 CAD/CAM 통합)

  • Han, Jung-Hyun;Han, In-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.1
    • /
    • pp.33-40
    • /
    • 2000
  • Computer Aided Process Planning (CAPP) plays a key role by linking CAD and CAM. Given CAD data of a part, CAPP has to recognize manufacturing features of the part. Despite the long history of research on feature recognition, its research results have rarely been transferred into industry. One of the reasons lies in the separation of feature recognition and process planning. This paper proposes to integrate the two activities through AI techniques, and presents efforts for manufacturable feature recognition, setup minimization, feature dependency construction, and generation of an optimal machining sequence.

  • PDF

Identification of Topological Entities and Naming Mapping for Parametric CAD Model Exchanges

  • Mun, Duh-Wan;Han, Soon-Hung
    • International Journal of CAD/CAM
    • /
    • v.5 no.1
    • /
    • pp.69-81
    • /
    • 2005
  • As collaborative design and configuration design gain increasing importance in product development, it becomes essential to exchange parametric CAD models among participants. Parametric CAD models can be represented and exchanged in the form of a macro file or a part file that contains the modeling history of a product. The modeling history of a parametric CAD model contains feature specifications and each feature has selection information that records the name of the referenced topological entities. Translating this selection information requires solving the problems of how to identify the referenced topological entities of a feature (persistent naming problem) and how to convert the selection information into the format of the receiving CAD system (naming mapping problem). The present paper introduces the problem of exchanging parametric CAD models and proposes a solution to naming mapping.

A Study on the Expression of Features Interaction (특징 형상의 간섭 표현에 대한 연구)

  • 김경영;이수홍;고희동;김현석
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.142-149
    • /
    • 1997
  • This study is intended to develop a Feature based modeler. It is difficult to integrate CAD and CAM/CAPP with information that is given only by a conventional CAD system. Therefore a lot of studies have concentrated on a Feature based CAD system. But conventional Feature based modelers have had limitation on providing sufficient information related to Feature interaction. If a Feature based modeler is to be used in assembly simulation, a new Feature-based modeling method needs to be developed. Also to support collision detection between parts, we have to handle Feature interaction systematically. Therefore we suggest Cell data structure which handles interaction of Features by volume. The volume created by Feature interaction is saved as a Cell. With the Cell structure we solve problems involved with Feature interaction. This study shows how the Cell data structure can manage Feature interaction and give enough information in assembly simulation.

  • PDF

Simplification of a Feature-based 3D CAD Assembly Model Considering the Allowable Highest and Lowest Limits of the LOD (허용 가능한 LOD의 상하한을 고려한 특징형상 3D CAD 조립체 모델의 단순화)

  • Yu, Eun-seop;Lee, Hyunoh;Kwon, Soonjo;Lee, Jeong-youl;Mun, Duhwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.22-34
    • /
    • 2020
  • Three-dimensional (3D) computer-aided design (CAD) models require different levels of detail (LODs) depending on their purpose. Therefore, it is beneficial to automatically simplify 3D CAD assembly models to meet the desired LOD. Feature-based 3D CAD assembly models typically have the lowest and highest feasible limits of LOD during simplification. In order to help users obtain a feasible simplification result, we propose a method to simplify feature-based 3D CAD assembly models by determining the lowest and highest limits of LOD. The proposed method is verified through experiments using a simplification prototype implemented as a plug-in type module on Siemens NX.

A Knowledge-based CAD System for product and Mold Design in Injection Molding (사출제품 및 금형의 통합적 설계지원을 위한 지식형 CAD 시스템)

  • Huh, Y.J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.32-39
    • /
    • 1995
  • The design of injection molded polymeric parts has been done empirically, since it requires profound knowledge about the moldability and causal effects on the properties of the part, which are not available to designers through current CAD systems. An interactive computer-based design system is developed in order to realize the concept of rational design for the productivity and quality of mold making. The knowledge-based CAD system is constructed by adding the knowledge -base module for mold feature synthesis and appropriate CAE programs for mold design analysis in order to provide designers, at the initial design stage, with comprehensive process knowledge for feature synthesis, performance analysis and feature-based geometric modeling. A knowledge-based CAD system is a new tool which enables the concurrent design with integrated and balanced design decisions at the initial design stage of injection molding.

  • PDF

Feature-Based Non-manifold Geometric Modeling System to Provide Integrated Environment for Design and Analysis of Injection Molding Products (사출 성형 제품의 설계 및 해석의 통합 환경을 제공하기 위한 특징 형상 기반 비다양체 모델링 시스템의 개발)

  • 이상헌;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.133-149
    • /
    • 1996
  • In order to reduce the trial-and-errors in design and production of injection molded plastic parts, there has been much research effort not only on CAE systems which simulate the injection molding process, but also on CAD systems which support initial design and re-design of plastic parts and their molds. The CAD systems and CAE systems have been developed independently with being built on different basis. That is, CAD systems manipulate the part shapes and the design features in a complete solid model, while CAE systems work on shell meshes generated on the abstract sheet model or medial surface of the part. Therefore, it is required to support the two types of geometric models and feature information in one environment to integrate CAD and CAE systems for accelerating the design speed. A feature-based non-manifold geometric modeling system has been developed to provide an integrated environment for design and analysis of injection molding products. In this system, the geometric models for CAD and CAE systems are represented by a non-manifold boundary representation and they are merged into a single geometric model. The suitable form of geometric model for any application can be extracted from this model. In addition, the feature deletion and interaction problem of the feature-based design system has been solved clearly by introducing the non-manifold Boolean operation based on 'merge and selection' algorithm. The sheet modeling capabilities were also developed for easy modeling of thin plastic parts.

  • PDF

Feature-based Similarity Assessment for Re-using CAD Models (CAD 모델 재사용을 위한 특징형상기반 유사도 측정에 관한 연구)

  • Park, Byoung-Keon;Kim, Jay-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.1
    • /
    • pp.21-30
    • /
    • 2011
  • Similarity assessment of a CAD model is one of important issues from the aspect of model re-using. In real practice, many new mechanical parts are designed by modifying existing ones. The reuse of part enables to save design time and efforts for the designers. Design time would be further reduced if there were an efficient way to search for existing similar designs. This paper proposes an efficient algorithm of similarity assessment for mechanical part model with design history embedded within the CAD model. Since it is possible to retrieve the design history and detailed-feature information using CAD API, we can obtain an accurate and reliable assessment result. For our purpose, our assessment algorithm can be divided by two: (1) we select suitable parts by comparing MSG (Model Signature Graph) extracted from a base feature of the required model; (2) detailed-features' similarities are assessed with their own attributes and reference structures. In addition, we also propose a indexing method for managing a model database in the last part of this article.

A Study on CAD interfaced CAPP System for Turning Operation ( I ) : Automatic Feature Recognition and Process Selection (선삭공정에서 CAD 인터페이스된 자동공정계획시스템개발에 관한 연구( I ) : 형상특징의 자동인식과 공정선정)

  • Cho, Kyu-Kap;Kim, In-Ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.2
    • /
    • pp.1-16
    • /
    • 1991
  • This paper deals with some critical activities of CAPP system such as generation of part description database, part feature recognition, process and operation selection, and sequencing method for turning operation of symmetric rotational parts. The part description database is generated by data conversion module from CAD data, and the part feature is recognized by using both pattern primitives and feature recognition rules. Machining processes and operations are selected based on machining surface features and its sequence is determined by rules acquired from process planning expert. AutoCAD is employed as CAD system and computer program is developed by using Turbo-C on IBM PC/AT compatible system.

  • PDF