• Title/Summary/Keyword: CAD Application

Search Result 534, Processing Time 0.025 seconds

Effects of various zirconia surface treatments for roughness on shear bond strength with resin cement (지르코니아의 거칠기 증가를 위한 다양한 표면처리방법이 레진 시멘트와의 전단결합강도에 미치는 영향)

  • Bae, Gang-Ho;Bae, Ji-Hyeon;Huh, Jung-Bo;Choi, Jae-Won
    • Journal of Technologic Dentistry
    • /
    • v.42 no.4
    • /
    • pp.326-333
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the effects of various zirconia surface treatment methods on shear bond strength with resin cements. Methods: We prepared 120 cylindrical zirconia specimens (⌀10 mm×10 mm) using computer-aided design/computer-aided manufacturing (CAD/CAM). Each specimen was randomly subjected to one of four surface treatment conditions: (1) no treatment (control), (2) airborne-particle abrasion with 50 ㎛ of Al2O3 (A50), (3) airborne-particle abrasion with 125 ㎛ of Al2O3 (A125), and (4) ZrO2 slurry (ZA). Using a polytetrafluoroethylene mold (⌀6 mm×3 mm), we applied three resin cements (Panavia F 2.0, Super-Bond C&B, and Variolink N) to each specimen. The shear bond strength tests were performed in a universal testing machine. The surfaces of representative specimens of each group were evaluated under scanning electron microscope. We used one-way analysis of variance (ANOVA), two-way ANOVA, and post hoc Tukey honest significant difference test to analyze the data. Results: In the surface treatment method, the A50 group showed the highest bond strength, followed by A125, ZA, and control groups; however, no significant difference was observed between A50 and A125, A125 and ZA, and ZA and control (p>0.05). Among the resin cements, Super-Bond C&B showed the highest shear bond strength, followed by Panavia F 2.0 and Variolink N (p<0.05). Conclusion: Within the limitations of this study, application of airborne-particle abrasion and ZrO2 slurry improved the shear bond strength of resin cement on zirconia.

Use of deep learning in nano image processing through the CNN model

  • Xing, Lumin;Liu, Wenjian;Liu, Xiaoliang;Li, Xin;Wang, Han
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.185-195
    • /
    • 2022
  • Deep learning is another field of artificial intelligence (AI) utilized for computer aided diagnosis (CAD) and image processing in scientific research. Considering numerous mechanical repetitive tasks, reading image slices need time and improper with geographical limits, so the counting of image information is hard due to its strong subjectivity that raise the error ratio in misdiagnosis. Regarding the highest mortality rate of Lung cancer, there is a need for biopsy for determining its class for additional treatment. Deep learning has recently given strong tools in diagnose of lung cancer and making therapeutic regimen. However, identifying the pathological lung cancer's class by CT images in beginning phase because of the absence of powerful AI models and public training data set is difficult. Convolutional Neural Network (CNN) was proposed with its essential function in recognizing the pathological CT images. 472 patients subjected to staging FDG-PET/CT were selected in 2 months prior to surgery or biopsy. CNN was developed and showed the accuracy of 87%, 69%, and 69% in training, validation, and test sets, respectively, for T1-T2 and T3-T4 lung cancer classification. Subsequently, CNN (or deep learning) could improve the CT images' data set, indicating that the application of classifiers is adequate to accomplish better exactness in distinguishing pathological CT images that performs better than few deep learning models, such as ResNet-34, Alex Net, and Dense Net with or without Soft max weights.

CONNECTING TECHNOLOGY, INDUSTRY AND RESEARCH: A VERTICAL INTEGRAL PROJECT COURSE FOR BIM EDUCATION OPPORTUNITIES

  • F. H. (Bud) Griffis;Mei Liu;Andrew Bates
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.252-259
    • /
    • 2013
  • Building Information Modeling (BIM) is utilizing CAD technology in a way that ultimately ties all the components of a building together as objects imbedded with information, and has been changing the way we design and build over the last 20-30 years. In Polytechnic Institute of NYU, there are four BIM courses offered which provide students with different levels of knowledge regarding BIM Technique, BIM Standards, BIM Guideline and Roadmap for Private and Public Implementation, BIM Application in Real Projects, the Cooperation of BIM and IPD for Public Works in New York City. With advanced BIM technology, BIM's integration into the construction process and its incorporation into project delivery systems, especially Integrated Project Delivery (IPD) are the bridges between technology, industry and research. This paper presents an integrated BIM curriculum with three modules: 1) BIM functions and Bid Preparation; 2) Time-Cost Trade-off Analysis; and 3) Problems Solving in BIM/IPD Environment. In this project-based curriculum developed by the common efforts of academia, public agency and industry, the objectives are: (1) to provide the information and skills needed to successfully implement BIM into the construction phase; (2) to identify BIM's role in construction and the project delivery system; (3) to develop a module in conjunction with leading BIM into project delivery system, particularly coordination between BIM and IPD; (4) to connect technology and research into industry. The course assessment was conducted and the results indicate that it is a successful reform in construction management education.

  • PDF

Evaluation of Application of 3D Printing Phantom According to Manufacturing Method (구성 물질에 따른 3D 프린팅 팬텀의 적용 평가)

  • Young Sang Kim;Ju Young Lee;Hoon Hee Park
    • Journal of Radiation Industry
    • /
    • v.17 no.2
    • /
    • pp.173-181
    • /
    • 2023
  • 3D printing is a technology that can transform and process computerized data obtained through modeling or 3D scanning via CAD. In the medical field, studies on customized 3D printing technology for clinical use or patients and diseases continue. The importance of research on filaments and molding methods is increasing, but research on manufacturing methods and available raw materials is not being actively conducted. In this study, we compare the characteristics of each material according to the manufacturing method of the phantom manufactured with 3D printing technology and evaluate its usefulness. We manufactured phantoms of the same size using poly methyl meta acrylate (PMMA), acrylonitrile butadiene styrene (ABS), and Poly Lactic Acid (PLA) based on the international standard phantom of aluminum step wedge. We used SITEC's radiation generator (DigiRAD-FPC R-1000-150) and compared the shielding rate and line attenuation coefficient through the average after shooting 10 times. As a result, in the case of the measured dose transmitted through each phantom, it was confirmed that the appearance of the dose measured for phantoms decreased linearly as the thickness increased under each condition. The sensitivity also decreased as the steps increased for each phantom and confirmed that it was different depending on the thickness and material. Through this study, we confirmed that 3D printing technology can be usefully used for phantom production in the medical field. If further development of printing technology and studies on various materials are conducted, it is believed that they will contribute to the development of the medical research environment.

Development of BIM Templates for Vest-Pocket Park Landscape Design (소공원의 조경설계를 위한 BIM 템플릿 개발)

  • Seo, Young-hoon;Kim, Dong-pil;Moon, Ho-Gyeong
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.1
    • /
    • pp.40-50
    • /
    • 2016
  • A BIM, which is being applied actively to the construction and civil construction industries, is a technology that can maximize efficiency of various sectors from initial planning and design, construction, and maintenance, to demolition; however, it is in the introductory phase in the field of domestic landscaping. In order to introduce and promote BIM in the field of landscape design, this study developed a prototype of a library and template and analyzed the performance of trial application. For the development of a prototype, annotations and types were analyzed from floor plans of existing small parks, and components of landscape template were deduced. Based on this, play facilities, pergola, and benches were madeintofamily and templates, making automatic design possible. In addition, annotations and tags that are often used in landscape design were made, and a 3D view was materialized through visibility/graphic reassignment. As for tables and quantities, boundary stone table, mounding table, summary sheet of quantities, table of contents, and summary sheet of packaging quantities were grouped and connected with floor plans; regarding landscaping trees, classification criteria and name of trees that are suitable for domestic situations were applied. A landscape template was created to enable the library file format(rfa) that can be mounted on a building with BIM programs. As for problems that arose after the trial application of the prepared template, some CAD files could not be imported; also, while writing tables, the basis of calculation could not be made automatically. Regarding this, it is thought that functions of a BIM program and template need improvement.

Application Technology of Multi-texturing for Effective Representation of Natural Ground on the 4D System for Civil Engineering Projects (토목공사용 4D 시스템의 효율적인 자연지형 표현을 위한 멀티텍스처링 기법 적용기술 개발)

  • Kang Leen-Seok;Kwak Joong-Min;Jee Sang-Bok;Kim Chang-Hak;Lee Yong-Su
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.349-352
    • /
    • 2004
  • 4D system has applied to construction project as a management tool after the late 1990's. Various 4D systems have been developed, however they have some problems that should be improved. Especially, the 4D system for civil engineering project needs synthesized 3D model between natural ground condition and physical facility type. It is a different problem comparing with the system for building project. 1'his study suggests an automatically synthesizing methodology between ground triangulate network and design triangulate network. Furthermore the study develops an application methodology of multi-texturing technique defined in virtual reality modeling language (VRML) for skipping the 3D model synthesizing process from the 4D model development processes. The suggested methodology is applied to the prototype of real 4D system. The proposed technique for 3D modeling may be used as an essential methodology for developing 4D system for civil engineering projects.

  • PDF

A Study on the Implementation of an Agile SFFS Based on 5DOF Manipulator (5축 매니퓰레이터를 이용한 쾌속 임의형상제작시스템의 구현에 관한 연구)

  • Kim Seung-Woo;Jung Yong-Rae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.1
    • /
    • pp.1-11
    • /
    • 2005
  • Several Solid Freeform Fabrication Systems(SFFS) are commercialized in a few companies for rapid prototyping. However, they have many technical problems including the limitation of applicable materials. A new method of agile prototyping is required for the recent manufacturing environments of multi-item and small quantity production. The objectives of this paper include the development of a novel method of SFFS, the CAFL/sup VM/(Computer Aided Fabrication of Lamination for Various Material), and the manufacture of the various material samples for the certification of the proposed system and the creation of new application areas. For these objectives, the technologies for a highly accurate robot path control, the optimization of support structure, CAD modeling, adaptive slicing was implemented. However, there is an important problem with the conventional 2D lamination method. That is the inaccuracy of 3D model surface, which is caused by the stair-type surface generated in virtue of vertical 2D cutting. In this paper, We design the new control algorithm that guarantees the constant speed, precise positioning and tangential cutting on the 5DOF SFFS. We develop the tangential cutting algorithm to be controlled with constant speed and successfully implemented in the 5DOF CAFL/sup VM/ system developed in this paper. Finally, this paper confirms its high-performance through the experimental results from the application into CAFL/sup VM/ system.

A Study on Construction and Application of Nuclear Grade ESF ACS Simulator (원자력등급 ESF 공기정화계통 시뮬레이터 제작 및 활용에 관한 연구)

  • Lee, Sook-Kyung;Kim, Kwang-Sin;Sohn, Soon-Hwan;Song, Kyu-Min;Lee, Kei-Woo;Park, Jeong-Seo;Hong, Soon-Joon;Kang, Sun-Haeng
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.319-327
    • /
    • 2010
  • A nuclear plant ESF ACS simulator was designed, built, and verified to perform experiment related to ESF ACS of nuclear power plants. The dimension of 3D CAD model was based on drawings of the main control room(MCR) of Yonggwang units 5 and 6. The CFD analysis was performed based on the measurement of the actual flow rate of ESF ACS. The air flowing in ACS was assumed to have $30^{\circ}C$ and uniform flow. The flow rate across the HEPA filter was estimated to be 1.83 m/s based on the MCR ACS flow rate of 12,986 CFM and HEPA filter area of 9 filters having effective area of $610{\times}610mm^2$ each. When MCR ACS was modeled, air flow blocking filter frames were considered for better simulation of the real ACS. In CFD analysis, the air flow rate in the lower part of the active carbon adsorber was simulated separately at higher than 7 m/s to reflect the measured value of 8 m/s. Through the CFD analyses of the ACSes of fuel building emergency ventilation system, emergency core cooling system equipment room ventilation cleanup system, it was confirmed that all three EFS ACSes can be simulated by controlling the flow rate of the simulator. After the CFD analysis, the simulator was built in nuclear grade and its reliability was verified through air flow distribution tests before it was used in main tests. The verification result showed that distribution of the internal flow was uniform except near the filter frames when medium filter was installed. The simulator was used in the tests to confirm the revised contents in Reg. Guide 1.52 (Rev. 3).

Evaluation of marginal and internal gap under model-free monolithic zirconia restoration fabricated by digital intraoral scanner (디지털 구강스캐너로 모형 없이 제작한 전부지르코니아 수복물의 변연 및 내면 적합도 평가)

  • Lee, Jong-Won;Park, Ji-Man
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.3
    • /
    • pp.210-217
    • /
    • 2016
  • Purpose: The aim of this study was to evaluate the marginal and internal adaptation of monolithic zirconia restoration made without physical model by digital intraoral scanner. Materials and methods: A prospective clinical trial was performed on 11 restorations as a pilot study. The monolithic zirconia restorations were fabricated after digital intraoral impression taking by intraoral scanner (TRIOS, 3shape, Copenhagen, Denmark), computer-aided designing, and milling manufacturing process. Completed zirconia crowns were tried in the patients' mouth and a replica technique was used to acquire the crown-abutment replica. The absolute marginal discrepancy, marginal gap, and internal gap of axial, line angle, and occlusal part were measured after sectioning the replica in the mesiodistal and buccolingual direction. Statistical analysis was performed using Kruskal-Wallis and Mann-Whitney U test (${\alpha}=.05$). Results: From the adaptation analysis by replica, the statistically significant difference was not found between mesiodistal and buccolingual sections (P>.05), but there was significant difference among the measurement location (P<.01). The amount of absolute marginal discrepancy was larger than those of marginal gap and internal gap (P<.01). Conclusion: Within the limitations of this study, the adaptation accuracy of model-free monolithic zirconia restoration fabricated by intraoral scanner exhibited clinically acceptable result. However, the margin of zirconia crown showed tendency of overcontour and cautious clinical application and follow up is necessary.

Road Maintenance Planning with Traffic Demand Forecasting (장래교통수요예측을 고려한 도로 유지관리 방안)

  • Kim, Jeongmin;Choi, Seunghyun;Do, Myungsik;Han, Daeseok
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.47-57
    • /
    • 2016
  • PURPOSES : This study aims to examine the differences between the existing traffic demand forecasting method and the traffic demand forecasting method considering future regional development plans and new road construction and expansion plans using a four-step traffic demand forecast for a more objective and sophisticated national highway maintenance. This study ultimately aims to present future pavement deterioration and budget forecasting planning based on the examination. METHODS : This study used the latest data offered by the Korea Transport Data Base (KTDB) as the basic data for demand forecast. The analysis scope was set using the Daejeon Metropolitan City's O/D and network data. This study used a traffic demand program called TransCad, and performed a traffic assignment by vehicle type through the application of a user equilibrium-based multi-class assignment technique. This study forecasted future traffic demand by verifying whether or not a realistic traffic pattern was expressed similarly by undertaking a calibration process. This study performed a life cycle cost analysis based on traffic using the forecasted future demand or existing past pattern, or by assuming the constant traffic demand. The maintenance criteria were decided according to equivalent single axle loads (ESAL). The maintenance period in the concerned section was calculated in this study. This study also computed the maintenance costs using a construction method by applying the maintenance criteria considering the ESAL. The road user costs were calculated by using the user cost calculation logic applied to the Korean Pavement Management System, which is the existing study outcome. RESULTS : This study ascertained that the increase and decrease of traffic occurred in the concerned section according to the future development plans. Furthermore, there were differences from demand forecasting that did not consider the development plans. Realistic and accurate demand forecasting supported an optimized decision making that efficiently assigns maintenance costs, and can be used as very important basic information for maintenance decision making. CONCLUSIONS : Therefore, decision making for a more efficient and sophisticated road management than the method assuming future traffic can be expected to be the same as the existing pattern or steady traffic demand. The reflection of a reliable forecasting of the future traffic demand to life cycle cost analysis (LCCA) can be a very vital factor because many studies are generally performed without considering the future traffic demand or with an analysis through setting a scenario upon LCCA within a pavement management system.