• 제목/요약/키워드: CAD/CAM (Computer Aided Design / Computer Aided Manufacture)

검색결과 22건 처리시간 0.018초

CAD/CAM 수복의 임상적 고찰 (Clinical considerations of CAD/CAM restoration)

  • 김현정
    • 대한치과의사협회지
    • /
    • 제57권3호
    • /
    • pp.169-174
    • /
    • 2019
  • The rapid evolution of CAD/CAM (Computer Aided Design / Computer Aided Manufacture) led to a dramatic impact on all disciplines of dentistry especially in the fields of prosthodontics and restorative dentistry. This article is to examine the history, advantages & disadvantages and some clinical considerations of CAD/CAM restoration.

  • PDF

CAD-CAM 인레이/온레이 수복을 위한 와동형성의 가이드라인 (Preparation guidelines for CAD/CAM inlay/onlay restorations)

  • 손성애
    • 대한치과의사협회지
    • /
    • 제54권8호
    • /
    • pp.651-657
    • /
    • 2016
  • Currently with the continuous development of ceramic and cementation materials, CAD-CAM(Computer-aided design/Computer-aided manufacture) restorations are becoming increasingly popular in esthetic dentistry. Preparation design is influenced by the selected restorative material, the fabrication method, and the ability to bond the restoration. For long-lasting CAD/CAM inlay/onlay restoration, clinicians should understand the basic knowledge of CAD/CAM restoration's cavity design to obtain the fracture resistance and proper fitting margin. This article gives an overview of preparation guidelines for CAD/CAM inlay/onlay restorations.

  • PDF

임상가를 위한 특집 1 - CAD/CAM 보철물의 제작 과정에서 오류가 발생할 수 있는 요소들에 대한 경험적 고찰 (The factors caused errors in the production process of CAD/CAM prosthesis based on experience)

  • 허중보;심준성
    • 대한치과의사협회지
    • /
    • 제52권6호
    • /
    • pp.332-345
    • /
    • 2014
  • In recent years, precision machining of the dental prosthesis by computer assisted system is becoming pervasive in clinical dentistry. Prosthesis fabricating system that is designed by computer software and made by computer devices is called as a CAD/CAM (Computer-Aided Design/Computer-Aided Manufacturing) system. By the use of dental CAD/CAM system, the improvement of marginal compatibility and mechanical properties in prosthesis can be obtained more effectively, an aesthetic quality by using new materials such as zirconia can be increased. Also, the restoration process can be simple and efficient, the production time can be shortened, the process of manufacture can be standardized, and the mass production is possible. What is clear is that these benefits are theoretically possible, but the dentist or dental technician must understand the CAD/CAM basic principles and limitations for obtaining the maximum advantages of CAD/CAM system. For this reason, this article will be presented about the basic principles of CAD/CAM system and the factors of error that might occur in the CAD/CAM process based on my empirical study.

Accuracy evaluation of dental models manufactured by CAD/CAM milling method and 3D printing method

  • Jeong, Yoo-Geum;Lee, Wan-Sun;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권3호
    • /
    • pp.245-251
    • /
    • 2018
  • PURPOSE. To evaluate the accuracy of a model made using the computer-aided design/computer-aided manufacture (CAD/CAM) milling method and 3D printing method and to confirm its applicability as a work model for dental prosthesis production. MATERIALS AND METHODS. First, a natural tooth model (ANA-4, Frasaco, Germany) was scanned using an oral scanner. The obtained scan data were then used as a CAD reference model (CRM), to produce a total of 10 models each, either using the milling method or the 3D printing method. The 20 models were then scanned using a desktop scanner and the CAD test model was formed. The accuracy of the two groups was compared using dedicated software to calculate the root mean square (RMS) value after superimposing CRM and CAD test model (CTM). RESULTS. The RMS value ($152{\pm}52{\mu}m$) of the model manufactured by the milling method was significantly higher than the RMS value ($52{\pm}9{\mu}m$) of the model produced by the 3D printing method. CONCLUSION. The accuracy of the 3D printing method is superior to that of the milling method, but at present, both methods are limited in their application as a work model for prosthesis manufacture.

치과용 CAD/CAM 밀링기에 대한 치과의료종사자들의 선호도 조사 (Survey study on the Preference of Dental Medical Personnel for Dental CAD/CAM Milling Machines)

  • 송은성;김봉주;임영준;이준재
    • 대한치과보철학회지
    • /
    • 제56권3호
    • /
    • pp.188-198
    • /
    • 2018
  • 목적: 최근 디지털 기술의 발달과 더불어 치과영역에서도 다양한 보철물 제작을 위해 Computer aided design/computer aided manufacture (CAD/CAM) 시스템의 사용이 확대되고 있다. CAD/CAM 시스템은 전통적인 방식의 보철물 제작의 단점을 극복하여, 치과의사와 치기공사가 보철물을 제작할 때, 환자에게 한 두 번의 병원 방문으로도 정확하고 정밀도 높은 보철물의 제공이 가능하게 할 수 있다. 본 논문은 현재 국내의 CAD/CAM 시스템 현황 및 인식을 파악함으로써 새로 장비를 도입할 때 고려해야 할 항목에 대한 조언을 제공하고자 한다. 대상 및 방법: 본 설문 조사는 서울대학교 치과 병원을 포함한 전국 298 명의 치과의사, 치과위생사 및 치과기공사를 대상으로 2016년 11월부터 12월까지 2 개월간 우편을 통해 실시하였다. 결과: 치과용 CAD/CAM 밀링기 구매 시 가장 고려하는 요인은 밀링기의 성능(64.43%)이었으며 용도는 치과보철물 제작과 임플란트용 맞춤형 지대주 제작이 49.33%로 가장 높았다. 또한, 응답자의 약 60% 이상이 CAD/CAM 밀링기가 만족할 만한 성능으로 개선된다면 새로운 장비의 구매에 대해 긍정적인 답변을 보였다. 결론: 설문조사 분석결과, 성능이 개선된 CAD/CAM 밀링기 디지털화 및 4차 산업혁명을 대비하는 치과산업에서 중요한 역할을 할 것으로 여겨진다.

CAE를 이용한 파인블랭킹 성형 해석 (Analysis of Fineblanking Forming using CAE)

  • 이관영;남기우
    • 동력기계공학회지
    • /
    • 제15권4호
    • /
    • pp.60-64
    • /
    • 2011
  • Computer-aided engineering (CAE) is the broad usage of computer software to aid in engineering tasks. It includes computer-aided design (CAD), computer-aided analysis (CAA), computer-integrated manufacturing (CIM), computer-aided manufacturing (CAM), material requirements planning (MRP), and computer-aided planning (CAP). In this study, the stress of mold analyzed using CAE technique. Punch loads were same difference between 0.5 % and 1.0 % of clearance, but punch load was decreased according to increasing of clearance. Punch load of pre-piercing process worked a little smaller than piercing process. Therefore, the hole of fine blanking process is also more efficient to manufacture the true size after pre-piercing.

CAD/CAM으로 제작된 지르코니아 코어의 지대치 형태에 따른 변연 및 내면 적합도에 관한 연구 (Marginal and internal fit according to the shape of the abutment of a zirconia core manufactured by computer-aided design/computer-aided manufacturing)

  • 김지수;류재경
    • 대한치위생과학회지
    • /
    • 제5권1호
    • /
    • pp.13-19
    • /
    • 2022
  • Background: In this study, zirconia copings were fabricated by setting clinically acceptable inner values for prostheses using computer-aided design/computer-aided manufacturing (CAD/CAM). The processed copings were evaluated for the marginal and internal fit of each abutment shape with a CAD program using the silicone replica technique. Methods A total of 20 copings was produced by selecting models commonly used in clinical practice. After injecting the sample, the minimum thickness, internal adhesion interval, and distance to the margin line were set to 0.5, 0.05, and 1.00 mm using a dental CAD program, respectively. It was measured using a 2D section function in a three-way program of the silicon replication technology. Although the positions and number of measurements of the anterior and posterior regions differed, nine parts of each pre-tube were designated and measured by referring to a previous study to compare the two samples. Results As a result, the average margin of the mesial, distal, and buccal (labial) surfaces was 59.90 ㎛ in the anterior region and 60.40 ㎛ in the posterior region. The mean axial wall margin was 67.25 ㎛ in the anterior region and 69.25 ㎛ in the posterior region. In occlusion, the anterior teeth (77.70 ㎛), posterior teeth (77.60 ㎛), and both anterior and posterior regions were within the clinically acceptable range. Conclusion The edge and inner fit of zirconia coping manufactured using the CAD/CAM system showed clinically applicable results. To reduce errors and increase accuracy, materials and machine errors that affect the manufacture of prosthetics should be investigated. Based on our results, the completeness of prosthetics could increase if the inner value and characteristics of the material are adjusted when applied in clinical practice.

입체 캠의 형상 설계와 가공에 관한 연구 (A Study on Design and Manufacture of Spatial Cams)

  • 김찬봉;양민양
    • 대한기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.1361-1371
    • /
    • 1993
  • 본 연구에서는 여러가지 입체 캠 기구에 대하여 기구학적인 구성조건과 캠 곡선을 바탕으로 매개변수형태의 포락면이론에 의하여 캠 형상을 구하고, 이를 직접 가공할 수 있는 NC 파트프로그램을 얻는 CAD/CAM 소프트웨어를 구성하여 정밀성, 생산성, 효율성 등을 증진하고자 한다.

조립식 교합 평면 인기 장치 POP (PNUD Occlusal Plane) Bow 시스템을 이용한 3D 프린팅 CAD-CAM 의치치료 증례 (Treatment of upper and lower 3D printing CAD-CAM dentures using the POP (PNUD Occlusal Plane) Bow system, a prefabricated occlusal plane transfer device: A case report)

  • 이설화;정창모;윤미정;허중보;이소현
    • 대한치과보철학회지
    • /
    • 제61권1호
    • /
    • pp.44-54
    • /
    • 2023
  • 기능적이고 심미적인 보철물을 제작하기 위해서 환자의 교합평면에 관한 정보를 정확하게 전달하는 과정은 필수적이다. 특히, 완전 무치악 환자의 경우 교합평면은 의치가 연조직을 올바르게 지지하고 안모와 심미적 조화를 이루며 제대로 된 발음을 할 수 있도록 중요한 기준을 제시하고, 안정적인 저작작용을 위한 균형 있는 교합관계를 형성하는데 매우 중요한 역할을 한다. 전통적으로 환자의 악간 관계와 교합평면에 대한 정보를 진료실에서 기공실로 전달하기 위해 교합기에 연결하여 사용하는 다양한 안궁(facebow) 시스템을 이용하였으나, CAD 상으로 이를 옮기는 과정에서는 여러 한계점이 있었다. 이 과정을 단순화하기 위하여 최근 조립식의 POP(PNUD Occlusal Plane) Bow system이 개발되었다. 본 증례에서는 완전 무치악 환자의 치료 과정에서 POP Bow system을 적용하여 환자의 교합평면 정보가 잘 반영된 CAD-CAM(Computer-aided design-computer-aided manufacturing) 치료 의치를 제작하였고, 심미적이고 기능적인 만족도를 얻을 수 있었다.

Bracket bonding to polymethylmethacrylate-based materials for computer-aided design/manufacture of temporary restorations: Influence of mechanical treatment and chemical treatment with universal adhesives

  • Goracci, Cecilia;Ozcan, Mutlu;Franchi, Lorenzo;Di Bello, Giuseppe;Louca, Chris;Vichi, Alessandro
    • 대한치과교정학회지
    • /
    • 제49권6호
    • /
    • pp.404-412
    • /
    • 2019
  • Objective: To assess shear bond strength and failure mode (Adhesive Remnant Index, ARI) of orthodontic brackets bonded to polymethylmethacrylate (PMMA) blocks for computer-aided design/manufacture (CAD/CAM) fabrication of temporary restorations, following substrate chemical or mechanical treatment. Methods: Two types of PMMA blocks were tested: $CAD-Temp^{(R)}$ (VITA) and $Telio^{(R)}$ CAD (Ivoclar-Vivadent). The substrate was roughened with 320-grit sandpaper, simulating a fine-grit diamond bur. Two universal adhesives, Scotchbond Universal Adhesive (SU) and Assure Plus (AP), and a conventional adhesive, Transbond XT Primer (XTP; control), were used in combination with Transbond XT Paste to bond the brackets. Six experimental groups were formed: (1) $CAD-Temp^{(R)}/SU$; (2) $CAD-Temp^{(R)}/AP$; (3) $CAD-Temp^{(R)}/XTP$; (4) $Telio^{(R)}$ CAD/SU; (5) $Telio^{(R)}$ CAD/AP; (6) $Telio^{(R)}$ CAD/XTP. Shear bond strength and ARI were assessed. On 1 extra block for each PMMA-based material surfaces were roughened with 180-grit sandpaper, simulating a normal/medium-grit ($100{\mu}m$) diamond bur, and brackets were bonded. Shear bond strengths and ARI scores were compared with those of groups 3, 6. Results: On $CAD-Temp^{(R)}$ significantly higher bracket bond strengths than on $Telio^{(R)}$ CAD were recorded. With XTP significantly lower levels of adhesion were reached than using SU or AP. Roughening with a coarser bur resulted in a significant increase in adhesion. Conclusions: Bracket bonding to CAD/CAM PMMA can be promoted by grinding the substrate with a normal/medium-grit bur or by coating the intact surface with universal adhesives. With appropriate pretreatments, bracket adhesion to CAD/CAM PMMA temporary restorations can be enhanced to clinically satisfactory levels.