• Title/Summary/Keyword: C2C12 myotubes

Search Result 58, Processing Time 0.027 seconds

Effects of Horse Meat Hydrolysate on Oxidative Stress, Proinflammatory Cytokines, and the Ubiquitin-Proteasomal System of C2C12 Cells

  • Hee-Jeong Lee;Dongwook Kim;Kyoungtag Do;Chang-Beom Yang;Seong-Won Jeon;Aera Jang
    • Food Science of Animal Resources
    • /
    • v.44 no.1
    • /
    • pp.132-145
    • /
    • 2024
  • Sarcopenia, the age-related muscle atrophy, is a serious concern as it is associated with frailty, reduced physical functions, and increased mortality risk. Protein supplementation is essential for preserving muscle mass, and horse meat can be an excellent source of proteins. Since sarcopenia occurs under conditions of oxidative stress, this study aimed to investigate the potential anti-muscle atrophy effect of horse meat hydrolysate using C2C12 cells. A horse meat hydrolysate less than 3 kDa (A4<3kDa) significantly increased the viability of C2C12 myoblasts against H2O2-induced cytotoxicity. Exposure of C2C12 myoblasts to lipopolysaccharide led to an elevation of cellular reactive oxygen species levels and mRNA expression of proinflammatory cytokines, including tumor necrosis factor-α and interleukin 6, and these effects were attenuated by A4<3kDa treatment. Additionally, A4<3kDa activated protein synthesis-related proteins through the protein kinase B/mechanistic target of rapamycin pathway, while decreasing the expression of activity and degradation-related proteins, such as Forkhead box O3, muscle RING finger protein-1, and Atrogin-1 in dexamethasone-treated C2C12 myotubes. Therefore, the natural material A4<3kDa has the potential of protecting against muscle atrophy, while further in vivo study is needed.

Effect of Bisphenol A on Insulin-Mediated Glucose Metabolism In Vivo and In Vitro

  • Ko, Jeong-Hyeon;Kang, Ju-Hee;Park, Chang-Shin;Shin, Dong-Wun;Kim, Ji-Hye;Kim, Hoon;Han, Seung-Baik
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.348-354
    • /
    • 2008
  • Bisphenol A (BPA), an environmental endocrine disrupter, enters the human body continuously in food and drink. Young children are likely to be more vulnerable than adults to chemical exposure due to the immaturities of their organ systems, rapid physical development, and higher ventilation, metabolic rates, and activity levels. The direct effect of BPA on peripheral tissue might also be of importance to the development of insulin resistance. However, the influence that BPA has on insulin signaling molecules in skeletal muscle has not been previously investigated. In this study, we examined the effect of BPA on fasting blood glucose (FBG) in post-weaned Wistar rats and on insulin signaling proteins in C2C12 skeletal muscle cells. Subsequently, we investigated the effects of BPA on insulin-mediated Akt phosphorylation in C2C12 myotubes. In rats, BPA treatment (0.1-1,000 ng/mL for 24 hours) resulted in the increase of FBG and plasma insulin levels, and reduced insulin-mediated Akt phosphorylation. Furthermore, the mRNA expression of insulin receptor (IR) was decreased after 24 hours of BPA treatment in C2C12 cells in a dose-dependent manner, whereas the mRNA levels of other insulin signaling proteins, including insulin receptor substrate-1 (IRS-1) and 5'-AMP-dependent protein kinase (AMPK), were unaffected. Treatment with BPA increased GLUT4 expression and protein tyrosine phosphatase 1B (PTP1B) activity in C2C12 myotubes, but not in protein levels. We conclude that exposure to BPA can induce insulin resistance by decreasing IR gene expression, which is followed by a decrease in insulin- mediated Akt activation and increased PTP1B activity.

Effect of Differentiation for Mouse Myoblast $C_{2}C_{12}$ Cells against Myostatin expression from Dodamtang (도담탕(導痰湯)이 $C_{2}C_{12}$세포주로부터 myostatin발현에 의한 심근에 미치는 영향)

  • Lee, You-Seung;Shin, Yoo-Jeong;Park, Jong-Hyuk;Kim, Seung-Mo;Paek, Kyung-Min;Park, Chi-Sang
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.243-257
    • /
    • 2008
  • Myostatin, a negative regulator of myogenesis, is shown to function by controlling the proliferation of myoblasts. In this study we show that myostatin is an inhibitor of myoblast differentiation and that this inhibition is mediated through Smad 3. To determine MyoD expression by Dodamtang treatment, we compared the expression pattern of $C_{2}C_{12}$ mouse myoblasts that constitutively express myostatin with control cells. In vitro, increasing concentrations of Dodamtang reversibly prevented the myogenic blockage of myoblasts by myostatin expression. ELISA assay, Western and confocal analysis indicated that treatment of Dodamtang to the low serum culture media increased the levels of MyoD leading to the inhibition of myogenic differentiation by myostatin. The stable transfection of $C_{2}C_{12}$ myoblasts with myostatin expressing constructs did rescue MyoD-induced myogenic differentiation. Consistent with this, the treatment of Dodamtang rescued the expression of a MyoD in $C_{2}C_{12}$ myoblasts treated with myostatin. Taken together, these results suggest that induction of MyoD by Dodamtang inhibits myostatin activity and expression via SMAD3 resulting in the rescue of the myoblasts to differentiate into myotubes. Thus we propose that myostatin action by Dodamtang plays a critical role in myogenic differentiation and that the muscular hyperplasia and hypertrophy seen in animals that blockage of functional myostatin is because of deregulated proliferation and differentiation of myoblasts.

  • PDF

Effect of Deer Antler Extract on Muscle Differentiation and 5-Aminoimidazole-4-Carboxamide Ribonucleoside (AICAR)-Induced Muscle Atrophy in C2C12 Cells

  • Jo, Kyungae;Jang, Woo Young;Yun, Beom Sik;Kim, Jin Soo;Lee, Hyun-Sun;Chang, Yeok Boo;Suh, Hyung Joo
    • Food Science of Animal Resources
    • /
    • v.41 no.4
    • /
    • pp.623-635
    • /
    • 2021
  • The effect of deer antler extract on muscle differentiation and muscle atrophy were evaluated to minimize muscle loss following aging. Various deer antler extracts (HWE, hot water extract of deer antler; FE, HWE of fermented deer antler; ET, enzyme-assisted extract of deer antler; UE, extract prepared by ultrasonication of deer antler) were evaluated for their effect on muscle differentiation and inhibition of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR)-induced muscle atrophy in C2C12 cells. Morphological changes according to the effect of antler extracts on muscle differentiation were confirmed by Jenner-Giemsa staining. In addition, the expression levels of genes related to muscle differentiation and atrophy were confirmed through qRT-PCR. In the presence of antler extracts, the length and thickness of myotubes and myogenin differentiation 1 (MyoD1) and myogenic factor 5 (Myf5) gene expression were increased compared to those in the control group (CON). Gene expression of AMP-activated protein kinase (AMPK), MyoD1, and myogenin, along with the muscle atrophy factors muscle RING finger-1 (MuRF-1) and forkhead box O3a (FoxO3a) upon addition of deer antler extracts to muscle-atrophied C2C12 cells was determined by qRT-PCR after treatment with AICAR. The expression of MuRF-1 and FoxO3a decreased in the groups treated with antler extracts compared to that in the group treated with AICAR alone. In addition, gene expression of MyoD1 and myogenin in the muscle atrophy cell model was significantly increased compared that into the CON. Therefore, our findings indicate that antler extract can increase the expression of MyoD1, Myf5 and myogenin, inhibit muscle atrophy, and promote muscle differentiation.

Effects of Agrimonia pilosa Ledeb. Water Extract on α-Glucosidase Inhibition and Glucose Uptake in C2C12 Skeletal Muscle Cells (짚신나물 열수 추출물의 α-Glucosidase 저해 효과 및 근육세포에서 포도당 이용에 미치는 영향)

  • Kim, Sang-Mi;Lee, Young Min;Kim, Mi-Ju;Nam, Song-Yee;Kim, Sung-Hee;Jang, Hwan-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.4
    • /
    • pp.806-813
    • /
    • 2013
  • Agrimonia pilosa Ledeb. is a medicinal plant with anti-tumor, anti-oxidant, anti-inflammatory and anti-hyperglycemic activities. However, few studies of the anti-diabetic effect of A. pilosa on insulin resistance status have been performed. In the present study, the anti-diabetic effect of A. pilosa water extract (AP) was determined by investigating its ${\alpha}$-glucosidase inhibitory property, glucose utilization, and uptake, as well as insulin resistance mechanism of action in C2C12 skeletal muscle cells. Compared to positive control (acarbose), AP ($10mg/m{\ell}$) showed a similar ${\alpha}$-glucosidase inhibitory capacity. Glucose uptake was significantly increased by $1{\mu}m$ insulin treatment (p<0.05). However, palmitic acid (FFA, 1 mM) induced muscle insulin resistance and glucose uptake dysfunction. On the other hand, AP ($10{\mu}g/m{\ell}$) was capable of reversing the FFA-induced insulin resistance in C2C12 myotubes. Compared to control, AP ($100{\mu}g/m{\ell}$ without insulin) significantly increased the utilization of glucose (p<0.05) in C2Cl2 myotubes cultured in normal glucose (7 mM). AP treatment significantly increased the relative mRNA and protein expression levels of Akt. In particular, the effect of A. pilosa on the insulin signaling system is associated with the up-regulation of Akt genes and glucose uptake in C2Cl2 myotubes. These results suggest that A. pilosa is useful in the prevention of diabetes and the treatment of hyperglycemic disorders.

Role of p-anisaldehyde in the Differentiation of C2C12 Myoblasts (C2C12 근육모세포의 분화에서 p-anisaldehyde의 역할)

  • Dal-Ah KIM;Kyoung Hye KONG;Hyun-Jeong CHO;Mi-Ran LEE
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.3
    • /
    • pp.184-194
    • /
    • 2023
  • In this study, we investigated whether p-anisaldehyde (PAA), the main component of essential oils derived from anise seeds, influences the differentiation of mouse C2C12 myoblasts. Cells were induced to differentiate over 5 days using a differentiation medium with or without PAA (50 or 200 mg/mL). Myotube length and diameter were measured, and the expressions of myogenic markers (myoblast determination protein 1, myogenin, myocyte enhancer factor 2, muscle creatine kinase, and myosin heavy chain) and atrophy-related genes (atrogin-1 and muscle ring finger-1 [MuRF-1]) were assessed by quantitative real-time polymerase chain reaction. Additionally, protein kinase B (Akt) phosphorylation was monitored by western blotting. PAA significantly induced the formation of smaller and thinner myotubes and reduced myogenic marker expression. Furthermore, PAA increased the expressions of atrogin-1 and MuRF-1 and simultaneously reduced Akt phosphorylation. Our findings indicate that PAA inhibits the myogenic differentiation of C2C12 cells by reducing the phosphorylation and activation of Akt.

Role of Dgat2 in Glucose Uptake and Fatty Acid Metabolism in C2C12 Skeletal Myotubes

  • So Young Bu
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1563-1575
    • /
    • 2023
  • Acyl-coenzyme A (CoA):diacylglycerol acyltransferase 2 (DGAT2) catalyzes the last stage of triacylglycerol (TAG) synthesis, a process that forms ester bonds with diacylglycerols (DAG) and fatty acyl-CoA substrates. The enzymatic role of Dgat2 has been studied in various biological species. Still, the full description of how Dgat2 channels fatty acids in skeletal myocytes and the consequence thereof in glucose uptake have yet to be well established. Therefore, this study explored the mediating role of Dgat2 in glucose uptake and fatty acid partitioning under short interfering ribonucleic acid (siRNA)-mediated Dgat2 knockdown conditions. Cells transfected with Dgat2 siRNA downregulated glucose transporter type 4 (Glut4) messenger RNA (mRNA) expression and decreased the cellular uptake of [1-14C]-labeled 2-deoxyglucose up to 24.3% (p < 0.05). Suppression of Dgat2 deteriorated insulin-induced Akt phosphorylation. Dgat2 siRNA reduced [1-14C]-labeled oleic acid incorporation into TAG, but increased the level of [1-14C]-labeled free fatty acids at 3 h after initial fatty acid loading. In an experiment of chasing radioisotope-labeled fatty acids, Dgat2 suppression augmented the level of cellular free fatty acids. It decreased the level of re-esterification of free fatty acids to TAG by 67.6% during the chase period, and the remaining pulses of phospholipids and cholesteryl esters were decreased by 34.5% and 61%, respectively. Incorporating labeled fatty acids into beta-oxidation products increased in Dgat2 siRNA transfected cells without gene expression involving fatty acid oxidation. These results indicate that Dgat2 has regulatory function in glucose uptake, possibly through the reaction of TAG with endogenously released or recycled fatty acids.

Inhibition of Type II Diabetes in ob/ob Mice and Enhancement of Mitochodrial Biogenesis in C2C12 Myotubes by Korean Mistletoe Extract (한국산 겨우살이 추출물(KME)의 2형 당뇨 억제 및 근육세포 미토콘드리아 생성 증가 효과)

  • Jung, Hoe-Yune;Yoo, Yung Choon;Kim, Inbo;Sung, Nak Yun;Choi, Ok-Byung;Choi, Bo-Hwa;Kim, Jong-Bae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.3
    • /
    • pp.324-330
    • /
    • 2015
  • In this study, the anti-diabetic activity of a cold water extract of Korean mistletoe (KME) was investigated in C57BL/6J Lep ob (ob/ob) mice. Oral administration of KME (50 or 100 mg/kg/d) significantly inhibited the level of blood glucose of ob/ob mice after 5 days from the beginning of KME treatment. And the anti-diabetic effect of KME was stabilized 10 days after oral administration, showing a substantial reduction of blood glucose levels by more than 20% as compared with control mice. The results of oral glucose tolerance test (OGTT) revealed that oral administration of KME gave rise to a remarkable improvement in overall glucose response. Oral administration of KME in ob/ob diabetic mice also significantly reduced blood total cholesterol (TCHO) and triglyceride (TG) levels compared with the diabetic control mice. Moreover, in an in vitro experiment using C2C12 myotubes, treatment of KME prominently increased glucose uptake. Interestingly, KME significantly increased the expression of peroxisome proliferator-activated receptor gamma coactivator 1-${\alpha}$ ($PGC-1{\alpha}$), a head regulator of mitochondrial biogenesis and oxidative metabolism, and $PGC-1{\alpha}$-associated genes such as glucose transporter type 4 (GLUT4), estrogen-related receptor-${\alpha}$ ($ERR-{\alpha}$), nuclear respiratory factor-1 (NRF-1), and mitochondrial transcription factor A (TmfA) in C2C12 cells. These results suggest that KME has potential as a novel therapeutic agent for diabetes, and its anti-diabetic activity may be related to the regulation of mitochondrial biogenesis.

Germinated Rhynchosia nulubilis Hydrolysate Ameliorates Dexamethasone-induced Muscle Atrophy by Downregulating MAFbx Expression in C2C12 Cells and C57BL/6 Mice (발아 서목태 가수분해물의 근위축 억제 효과)

  • Won Keong Lee;Eun Ji Kim;Sang Gon Kim;Young Min Goo;Young Sook Kil;Seung Mi Sin;Min Ju Ahn;Min Cheol Kang;Young-Sool Hah
    • Journal of Life Science
    • /
    • v.33 no.3
    • /
    • pp.277-286
    • /
    • 2023
  • Sarcopenia is the age-related loss of muscle mass and function. It is a natural part of aging and can lead to decreased mobility and increased frailty. The ubiquitin-proteasome pathway, which is involved in muscle protein degradation, is closely linked to sarcopenia. Germinated Rhynchosia nulubilis hydrolysate (GRH) has been reported to have anti-inflammatory and antioxidant properties, but there have been no reports on its inhibitory effect on muscle reduction. However, no study has yet explored the relationship between GRH and muscle loss inhibition. In this study, we evaluated the effects of GRH on muscle atrophy inhibitory activity in dexamethasone (Dexa)-induced muscle atrophy C2C12 myotubes and mouse models. Moreover, we identified a molecular pathway underlying the effects of GRH on skeletal muscle. May Grunwald-Giemsa staining showed that the length and area of myotubes increased in the groups treated with GRH. In addition, the GRH-treated group significantly reduced the expression of muscle ring finger protein 1 and muscular atrophy F-box (MAFbx) in the Dexa-induced muscular atrophy C2C12 model. GRH also improved muscle strength in C57BL/6 mice with Dexa-induced muscle atrophy, resulting in prolonged running exhaustive time and increased grip strength. We found that muscle strengthening by GRH was correlated with a decreased expression of the MAFbx gene in mouse muscle tissue. In conclusion, GRH can attenuate Dexa-induced muscle atrophy by inhibiting the ubiquitin-proteasome pathway via downregulation of the MAFbx gene expression.

Protective Effect of Enzymatically Modified Stevia on C2C12 Cell-based Model of Dexamethasone-induced Muscle Atrophy (덱사메타손으로 유도된 근위축 C2C12 모델에서 효소처리스테비아의 보호 효과)

  • Geon Oh;Sun-Il Choi;Xionggao Han;Xiao Men;Se-Jeong Lee;Ji-Hyun Im;Ho-Seong Lee;Hyeong-Dong Jung;Moon Jin La;Min Hee Kwon;Ok-Hwan Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.2
    • /
    • pp.69-78
    • /
    • 2023
  • This study aimed to investigate the protective effect of enzymatically modified stevia (EMS) on C2C12 cell-based model of dexamethasone (DEX)-induced muscle atrophy to provide baseline data for utilizing EMS in functional health products. C2C12 cells with DEX-induced muscle atrophy were treated with EMS (10, 50, and 100 ㎍/mL) for 24 h. C2C12 cells were treated with EMS and DEX to test their effects on cell viability and myotube formation (myotube diameter and fusion index), and analyze the expression of muscle strengthening or degrading protein markers. Schisandra chinensis Extract, a common functional ingredient, was used as a positive control. EMS did not show any cytotoxic effect at all treatment concentrations. Moreover, it exerted protective effects on C2C12 cell-based model of DEX-induced muscle atrophy at all concentrations. In addition, the positive effect of EMS on myotube formation was confirmed based on the measurement and comparison of the fusion index and myotube diameter when compared with myotubes treated with DEX alone. EMS treatment reduced the expression of muscle cell degradation-related proteins Fbx32 and MuRF1, and increased the expression of muscle strengthening and synthesis related proteins SIRT1 and pAkt/Akt. Thus, EMS is a potential ingredient for developing functional health foods and should be further evaluated in preclinical models.