DOI QR코드

DOI QR Code

Effects of Agrimonia pilosa Ledeb. Water Extract on α-Glucosidase Inhibition and Glucose Uptake in C2C12 Skeletal Muscle Cells

짚신나물 열수 추출물의 α-Glucosidase 저해 효과 및 근육세포에서 포도당 이용에 미치는 영향

  • Kim, Sang-Mi (Functional Food & Nutrition Division, Department of Agrofood Resources, RDA) ;
  • Lee, Young Min (Functional Food & Nutrition Division, Department of Agrofood Resources, RDA) ;
  • Kim, Mi-Ju (Functional Food & Nutrition Division, Department of Agrofood Resources, RDA) ;
  • Nam, Song-Yee (Functional Food & Nutrition Division, Department of Agrofood Resources, RDA) ;
  • Kim, Sung-Hee (Functional Food & Nutrition Division, Department of Agrofood Resources, RDA) ;
  • Jang, Hwan-Hee (Functional Food & Nutrition Division, Department of Agrofood Resources, RDA)
  • 김상미 (농촌진흥청 국립농업과학원 기능성식품과) ;
  • 이영민 (농촌진흥청 국립농업과학원 기능성식품과) ;
  • 김미주 (농촌진흥청 국립농업과학원 기능성식품과) ;
  • 남송이 (농촌진흥청 국립농업과학원 기능성식품과) ;
  • 김성희 (농촌진흥청 국립농업과학원 기능성식품과) ;
  • 장환희 (농촌진흥청 국립농업과학원 기능성식품과)
  • Received : 2013.10.14
  • Accepted : 2013.11.29
  • Published : 2013.12.31

Abstract

Agrimonia pilosa Ledeb. is a medicinal plant with anti-tumor, anti-oxidant, anti-inflammatory and anti-hyperglycemic activities. However, few studies of the anti-diabetic effect of A. pilosa on insulin resistance status have been performed. In the present study, the anti-diabetic effect of A. pilosa water extract (AP) was determined by investigating its ${\alpha}$-glucosidase inhibitory property, glucose utilization, and uptake, as well as insulin resistance mechanism of action in C2C12 skeletal muscle cells. Compared to positive control (acarbose), AP ($10mg/m{\ell}$) showed a similar ${\alpha}$-glucosidase inhibitory capacity. Glucose uptake was significantly increased by $1{\mu}m$ insulin treatment (p<0.05). However, palmitic acid (FFA, 1 mM) induced muscle insulin resistance and glucose uptake dysfunction. On the other hand, AP ($10{\mu}g/m{\ell}$) was capable of reversing the FFA-induced insulin resistance in C2C12 myotubes. Compared to control, AP ($100{\mu}g/m{\ell}$ without insulin) significantly increased the utilization of glucose (p<0.05) in C2Cl2 myotubes cultured in normal glucose (7 mM). AP treatment significantly increased the relative mRNA and protein expression levels of Akt. In particular, the effect of A. pilosa on the insulin signaling system is associated with the up-regulation of Akt genes and glucose uptake in C2Cl2 myotubes. These results suggest that A. pilosa is useful in the prevention of diabetes and the treatment of hyperglycemic disorders.

본 연구는 짚신나물 열수 추출물의 ${\alpha}$-glucosidase 저해 활성을 측정하고, 분화된 근육세포에서 glucose 이용과 인슐린 신호전달에 미치는 영향을 분석하였다. 짚신나물 열수 추출물($10mg/m{\ell}$)은 ${\alpha}$-glucosidase 활성을 67% 저해하였으며, 같은 농도의 양성대조구인 acarbose(63%)와 유사한 저해 효과를 보였다. 짚신나물 열수 추출물이 ${\alpha}$-glucosidase에 의한 단당류 생성을 저해함으로 식사 후 혈당이 급격히 상승하는 것을 억제하는데 효과적인 소재로 이용 가능성을 확인하였다. 또한 근육세포에서 인슐린 저항성을 유발하기 위해 지방산(1 mM, palmitic acid)를 처리하였고, glucose의 세포내 유입이 감소되는 것을 확인하였다. 지방산 처리 세포 모델에서 짚신나물 열수 추출물($10{\mu}g/m{\ell}$)은 glucose 이용을 유의적으로 회복시켜 주었다. Normal 상태의 배양조건에서 근육세포의 포도당 이용능은 짚신나물 열수 추출물($100{\mu}g/m{\ell}$) 처리에 의해 유의적으로 증가하였다. 근육세포 내로 glucose 유입은 운반 단백질인 Glut4를 통해 이루어지며, 이것은 인슐린이 신호전달을 통해 조절한다. 짚신나물 열수 추출물의 세포 내 glucose 이용 증가 효과는 인슐린 신호전달 관련 분자인 Akt 유전자와 단백질 발현을 증가시킨 것과 관련되는 것으로 추정된다. 결론적으로, 짚신나물 열수 추출물은 소화기관에서의 탄수화물 흡수 저해와 근육세포 내 glucose 이용 증가를 통해 혈당 조절 및 당 대사 개선에 긍정적인 영향을 미치고 있음을 확인하였다.

Keywords

References

  1. Baron AD. 1998. Postprandial hyperglycemia and ${\alpha}$-glucosidase inhibitors. Diabetes Res Clin Pract 40:51-55 https://doi.org/10.1016/S0168-8227(98)00043-6
  2. Cartee GD, Wojtaszewski JF. 2007. Role of Akt substrate of 160 kDa in insulin-stimulated and contraction-stimulated glucose transport. Appl Physiol Nutr Metab 32:557-566 https://doi.org/10.1139/H07-026
  3. Deng YT, Chang TW, Lee MS. 2012. Suppression of free fatty acid-Induced insulin resistance by phytopolyphenols in C2C12 mouse skeletal muscle cells. J Agric Food Chem 60:1059-1066 https://doi.org/10.1021/jf204496f
  4. Elmendorf JS. 2002. Signals that regulate GLUT4 translocation. J Membr Biol 190:167-174 https://doi.org/10.1007/s00232-002-1035-3
  5. Ferrannini E. 1998. Insulin resistance versus insulin deficienecy in non-insulin-dependent diabetes mellitus: Problems and prospects. Endocr Rev 19:447-490
  6. Hinchee-Rodriguez K, Garg N, Venkatakrishnan P, Roman MG, Adamo ML, Masters BS, Roman LJ. 2013. Neuronal nitric oxide synthase is phosphorylated in response to insulin stimulation in skeletal muscle. Biochem Biophys Res Commun 435:501-505 https://doi.org/10.1016/j.bbrc.2013.05.020
  7. Jenkins DJ, Wolever TM, Jenkins AL. 1988. Starchy foods and glycemic index diabetes care. Clin Diabetes 11:149-159
  8. Jung CH, Zhou S, Ding GX, Kim JH, Hong MH, Shin YC, Kim GJ, Ko SG. 2006. Antihyperglycemic activity of herb extracts on streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem 70:2556-2559 https://doi.org/10.1271/bbb.60238
  9. Kang BS. 1992. Medical Herbs. pp. 384-386. Young Rym Sa. Inc
  10. Kim HS, Kim TW, Kim DJ, Lee JS, Kim KK, Choe M. 2013. Antioxidant activities and ${\alpha}$-glucosidase inhibitory effect of water extracts from medicinal plants. Korean J Medicinal Crop Sci 21:197-203 https://doi.org/10.7783/KJMCS.2013.21.3.197
  11. Korea Diabetes Association. 2012. Diabetes Fact Sheet in Korea 2012. p. 2
  12. Lanner JT, Bruton JD, Katz A, Westerblad H. 2008. $Ca^{2+}$ and insulin-mediated glucose uptake. Curr Opin Pharmacol 8: 339-345 https://doi.org/10.1016/j.coph.2008.01.006
  13. Lee JC, Lim KT, Jang YS. 2002. Indentification of Rhus verniciflua stokes compounds that exhibit free radical scavenging and anti-apoptotic properties. Bio-Chim Biophys Acta 1570:181-191 https://doi.org/10.1016/S0304-4165(02)00196-4
  14. Lee KW. 2005. The importance of lifestyle in the prevention and treatment of diabetes. J Korean Med Assoc 48:703-706 https://doi.org/10.5124/jkma.2005.48.8.703
  15. Lin-Moshier Y, Marchant JS. 2013. A rapid western blotting protocol for the Xenopus oocyte. Cold Spring Harbor Protocols 72793:262-265
  16. Liu Y, Lai YC, Hill EV, Tyteca D, Carpentier S, Ingvaldsen A, Vertommen D, Lantier L, Foretz M, Dequied F, Courtoy, PJ, Erneux, C, Viollet B, Shepherd PR, Tavare JM, Jensen J, Rider MH. 2013. Phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) is an AMPK target participating in contractionstimulated glucose uptake in skeletal muscle. Biochem J 455:195-206 https://doi.org/10.1042/BJ20130644
  17. Ma J, Nakagawa Y, Kojima I, Shibata H. 2013. Prolonged insulin stimulation downregulates GLUT4 through oxidative stressmediated retromer inhibition by a protein kinase CK2-dependent mechanism in 3T3-L1 adipocytes. J Biol Chem in press
  18. Marle A, Krall LP, Bradley RF, Christlieb AR, Soell JS. 1985. Joslin's Diabetes Mellitus 12th ed. pp 251-277. Lea & Febiger, Philadelphia
  19. Moody CS, Hassan HM. 1982. Mutagenicity of oxygen free radicals. Proc Natl Acad Sci 79:2855-2859 https://doi.org/10.1073/pnas.79.9.2855
  20. Park TS, Lee SY, Kim HJ, Kim KT, Kim YJ, Jeong I, Do WN, Lee HJ. 2009. Extracts of adlay, barley and rice bran have antioxidant activity and modulate fatty acid metabolism in adipocytes. Korean J Food & Nutr 22:456-462
  21. Saito T, Jones CC, Huang S, Czech MP, Pilch PF. 2007. The interaction of Akt with APPL1 is required for insulin-stimulated Glut4 translocation. J Biol Chem 282:32280-32287 https://doi.org/10.1074/jbc.M704150200
  22. Salimifar M, Fatehi-Hassanabad, Z, Fatehi M. 2013. A review on natural products for controlling type 2 diabetes with an emphasis on their mechanisms of actions. Current Diabetes Reviews 9:402-411 https://doi.org/10.2174/15733998113099990076
  23. Shinde J, Taldone T, Barletta M, Kunaparaju N, Hu B, Kumar S, Placido J, William ZS. 2008. ${\alpha}$-Glucosidase in hibitory activity of Syaygium cumini (Linn). Skeels seed kernel in vitro and in Goto-Kakizaki (GK) rats. Carbohydrate Res 343:1278-1281 https://doi.org/10.1016/j.carres.2008.03.003
  24. Tan SC, Yiap BC. 2009. DNA, RNA, and protein extraction: The past and the present. J Biomed Biotechnol 2009:574398
  25. Tan SX, Ng Y, Meoli CC, Kumar A, Khoo PS, Fazakerley DJ, Junutula JR, Vali S, James DE, Stockli J. 2012. Amplification and demultiplexing in insulin-regulated Akt protein kinase pathway in adipocytes. J Biol Chem 287:6128-6138 https://doi.org/10.1074/jbc.M111.318238
  26. Tang YP, Li YF, Hu J, Lou FC. 2002. Isolation and identification of antioxidants from Sophora janponica. J Asian Nat Prod Res 4:123-128 https://doi.org/10.1080/10286020290027407
  27. Watanabe J, Kurihara H, Niki R. 1997. Isolation and identification of a alpha-glucosidase inhibitors from Tochu-cha (Eucommia ulmoides). Biosci Biotechnol Biochem 61:177-178 https://doi.org/10.1271/bbb.61.177
  28. Watson RT, Pessin JE. 2001. Intracellular organization of insulin signaling and GLUT4 translocation. Recent Prog Horm Res 56:175-194 https://doi.org/10.1210/rp.56.1.175
  29. White MF. 2003. Insulin signaling in health and disease. Science 302:1710-1711 https://doi.org/10.1126/science.1092952
  30. Xu X, Qi X, Wang W, Chen G. 2005. Separation and determination of flavonoids in Agimonia pilosa Ledeb. by capillary electrophoresis with electrochemical detection. J Sep Sci 28: 647-652 https://doi.org/10.1002/jssc.200400095
  31. Zhang L, Yang G, Untereiner A, Ju Y, Wu L, Wang R. 2013. Hydrogen sulfide impairs glucose utilization and increases gluconeogenesis in hepatocytes. Endocrinology 154:114-126 https://doi.org/10.1210/en.2012-1658
  32. Zou C, Wang Y, Shen Zhufang. 2005. 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. J Biochem Biophys Methods 64:207-215 https://doi.org/10.1016/j.jbbm.2005.08.001

Cited by

  1. Agrimonia pilosa Ledeb. aqueous extract improves impaired glucose tolerance in high-fat diet-fed rats by decreasing the inflammatory response vol.17, pp.1, 2017, https://doi.org/10.1186/s12906-017-1949-z
  2. Postprandial hypoglycemic effects of mulberry twig and root barkin vivoandin vitro vol.49, pp.1, 2016, https://doi.org/10.4163/jnh.2016.49.1.18
  3. The Manufacturing and Biological Activity Evaluation of Wheat and Barley Mixture Bread prepared with Molokhia Powder vol.28, pp.4, 2015, https://doi.org/10.9799/ksfan.2015.28.4.676
  4. Bitter Melon (Momordica charantia) Extract Enhances Exercise Capacity in Mouse Model vol.29, pp.4, 2016, https://doi.org/10.9799/ksfan.2016.29.4.506
  5. 다슬기 protamex 가수분해물(MPH)의 항당뇨 기작 연구 vol.24, pp.7, 2013, https://doi.org/10.11002/kjfp.2017.24.7.1007
  6. 진피(陳皮)의 항산화 활성 및 L6 근육세포에서 당대사에 미치는 영향 vol.33, pp.4, 2018, https://doi.org/10.6116/kjh.2018.33.4.101
  7. Potentials of Chenpi on Metabolic Syndrome: A Review vol.42, pp.4, 2013, https://doi.org/10.22246/jikm.2021.42.4.645