• 제목/요약/키워드: C. pyrenoidosa

검색결과 8건 처리시간 0.019초

Dunaliella tertiolecta의 포도당산화와 산화효소계 (I) Whole cells과 cell-free systems에 의한 14C-glucose의 산화 (Glucose Oxidation and It's Oxidative Enzyme Systems in Dunaliella tertiolecta.(I) Oxidation of 14C-glucose in Whole Cells and Cell-free Systems)

  • 권영명
    • Journal of Plant Biology
    • /
    • 제12권2호
    • /
    • pp.7-14
    • /
    • 1969
  • Dunaliella tertiolecta did not show any increase in respiration rate when supplied with glucose, glycerol, sucrose, L-alanine, acetate, pyruvate and succinate. This was in contrast to Chlorella pyrenoidosa, which, under identical conditions, showed significant increase when supplied with glucose or acetate but not with the other compounds. Production of 14CO2 from added 14C-glucose in D. tertiolecta was lower than the other 14C-labelled substrates: L-alinine, glycerol, succinate, but higher than 14C-sucrose addition. And it was also lower than C. pyrenoidosa experiments which was added 14C-glucose as a substrate. Light reduced amounts of labelled carbon dioxide from 14C-glucose or 14C-acetate and increased incorporation of 14C from the substrates to cell materials in either D. tertiolecta or C. pyrenoidosa. The contribution of 14C from 14C-glucose to 14CO2 in cell-free system of D. tertiolecta were much higher than in whole cell suspension. It was contrast to C. pyrenoidosa which were showed reduction of 14CO2 production in cell-free systems than whole cell suspensions. When cell-free systems of D. tertiolecta and C. pyrenoidosa were supplied with ATP, NAD, NADP or/and hexokinase, it was remarkably increased production of 14CO2 from the substrates than the control. It was concluded that the low ability of D. tertiolecta to metabolize glucose were caused by the impermeability of the cell membrane to glucose and were not due to deficiencies of enzyme systems concerning glucose metabolism. In the cell-free systems, it seemed to be more active pentose phosphate pathway than glycolytic pathway in D. tertiolecta.

  • PDF

Chlorella pyrenoidosa의 생장 특성 및 동일 균주로부터 Acetaldehyde Dehydrogenase의 활성 검출 (Cellular Growth Traits and Detection of Acetaldehyde Dehydrogenase from Chlorella pyrenoidosa)

  • 이준우
    • 미생물학회지
    • /
    • 제45권4호
    • /
    • pp.385-390
    • /
    • 2009
  • 광합성 담수 녹조류인 Chlorella pyrenoidosa의 최적 생장 조건을 알기 위해 배양 온도, 시간, 영양물질의 영향 및 조도 등을 조사하였다. Growth chamber를 사용하여 알아본 가장 적절한 조건은 온도 $28^{\circ}C$에서 4일간 배양했을 때이며 배지에 첨가된 타 영양물질의 농도가 높을수록 활발한 광합성을 하면서 생장하였고 조도(Lux)가 크면 클 수록 잘 자랐다. 또한 동일 균주로부터 acetaldehyde를 분해하는 효소의 활성을 살펴보았는데 이 효소는 $\beta$-$NAD^+$를 조효소로 하는 탈수소효소였으며, ODS-Hypersil column과 50%(v/v) acetonitrile을 이동상으로 한 HPLC로 분석한 결과 pH 9.0, 온도 $40^{\circ}C$ 부근에서 최대 효소 활성을 보여주었다.

Dunaliella tertiolecta의 포도당산화와 산화효소계 (II) Cell-free Extracts를 사용한 Glycolytic 및 Pentose Phosphate Pathway의 존재확인 (Glucose Oxidation and It's Oxidative Enzyme Systems in Dunaliella tertiolecta. (II) Evidence for Glycolytic and Pentose Phosphate Pathways in Cell-free Extracts)

  • 권영명
    • Journal of Plant Biology
    • /
    • 제12권2호
    • /
    • pp.15-22
    • /
    • 1969
  • By spectrophotometric assay method, the following enzymes could be detected in Dunaliella tertiolecta and Chlorella pyrenoidosa cell-free extracts: Hexokinase; Glucose-6-phosphate, 6-Phosphogluconate and Triosephosphate dehydrogenase; Transketolase; Phosphogluco and Ribosephosphate isomerase; Phosphoglucomutase; Phosphofructokinase; Fructosediphosphate aldorase and Ribulosephosphate 3-epimerase. Such enzymes are in accordance with the proposed pathway of glucose catabolism by D. tertiolecta as well as C. pyrenoidosa. Also, it could be estimated, under the presence of NADP, that pentose phosphate pathway were more active than glycolytic pathway in D. tertiolecta cell-free systems.

  • PDF

해양 녹조류로부터 Eicosapentaenoic acid(EPA) 생산의 최적 광도에 관한 연구 (The Effects of tight Intensity in Producing EPA from Marine Green Algae)

  • 이현용;강재구
    • 한국미생물·생명공학회지
    • /
    • 제17권2호
    • /
    • pp.170-172
    • /
    • 1989
  • It is preyed that marine algae, Chlorella pyrenoidosa can synthesize about 3.52% of eicosapentaenoic (EPA) of dry cell weight at the light intensity of 10 W/$\m^2$ which is optimal light intensity of producing EPA at $25^{\circ}C$. An equation to predict the amounts of EPA in the culture broth is derived as an exponential form with 0.91 of the correlation factor. The behavior of cell growth follows a photo-inhibition model by showing 12 W/$\m^2$ of saturation light intensity.

  • PDF

Carbon Dioxide Mitigation by Microalgal Photosynthesis

  • Lee Jeong, Mi-Jeong;Gillis, James M.;Hwang, Jiann-Yang
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권12호
    • /
    • pp.1763-1766
    • /
    • 2003
  • Algal growth studies of Chlorella strains were conducted in a batch mode with bench type experiments. Carbon dioxide fixation rates of the following green microalgae were determined: Chlorella sp. H84, Chlorella sp. A2, Chlorella sorokiniana UTEX 1230, Chlorella vulgaris, and Chlorella pyrenoidosa. C. vulgaris, among other strains of microalgae, showed the highest growth rate (1.17 optical density/5 days). Cultivating conditions for C. vulgaris that produced the highest growth rate were at concentrations of 243 ${\mu}g\;CO_2$/mL, 10 mM ammonia, and 1 mM phosphate, with an initial pH range of 7-8.

A study of newly recorded genera and species of aerial algae in the order Chlorococcales (Chlorophyta) from the Hongcheon-river, Korea

  • Song, Mi Ae;Lee, Ok-Min
    • Journal of Ecology and Environment
    • /
    • 제37권4호
    • /
    • pp.315-325
    • /
    • 2014
  • Aerial algae were sampled from 28 sites on rocks, tree barks, and mosses along the Hongcheon-river in Gangwon-do, Korea, from December 2011 to September 2012 and then cultivated. Seven genera and eight species of the order Chlorococcales were newly recorded in Korea. These were Spongiococcum tetrasporum, Tetracystis aggregata, Myrmecia bisecta, Coenocystis inconstans, Lobosphaeropsis pyrenoidosa, Pseudococcomyxa simplex, Coelastrella oocystiformis, and C. vacuolata. As a result, the known Korean flora of the order Chlorococcales now includes 12 families with 54 genera, 263 species, 76 varieties, and 27 forma, giving a total of 366 taxa.

유기농업 생태계로부터 담수 녹조류 분리 및 형태적 동정 (Isolation and Morphological Identification of Fresh Water Green Algae from Organic Farming Habitats in Korea)

  • 김민정;심창기;김용기;홍성준;박종호;한은정;지형진;윤종철;김석철
    • 한국유기농업학회지
    • /
    • 제22권4호
    • /
    • pp.743-760
    • /
    • 2014
  • 본 연구는 유기농업에서 생물자원으로서 담수 클로렐라의 활용 가능성을 연구하고자 유기농 생태계로부터 담수 녹조류를 분리, 동정하고, 생물학적인 특성을 조사하였다. 조사 지역의 수온은 $12.4{\sim}28.2^{\circ}C$, pH는 6.1~8.5이었다. 담수 녹조류를 분리할 때 고체배양법이 액체배양법보다 오염도가 낮고 분리 빈도가 높았다. 전국 9개 지역, 6개 담수 녹조류 서식처로 부터 총 115개의 균주를 분리하였다. 담수 녹조류의 분리 및 배양을 위해 질소원으로는 $NaNO_3$$KNO_3$, 탄소원으로 $Na_2CO_3$를 사용하였고, macro media의 구성 성분 중 $MgSO_4{\cdot}7H_2O$$CaCl_2{\cdot}2H_2O$를 분리하여 제조한 BGMM(BG11 Modified Medium)배지를 고안하였다. 담수녹조류는 배양 후 4일째부터 급격히 흡광도가 증가하였고 8일째부터 흡광도가 감소하였다. 공시한 7개의 균주 중 CHK008 균주가 배양 7일째에 가장 높은 흡광도를 보였다. 담수 녹조류 배양에 적합한 BGMM 배지의 pH는 6~7이었고 조사되는 빛이 강할수록 생육이 증가하였으며 5종류 당류 중에서 Glucose와 Galactose를 첨가하였을 때 클로랄라의 생육이 좋았다. 순수 분리한 16개 녹조류 균주의 균총색은 녹색, 진녹색, 연녹색을 나타내었고, 11개의 균주가 형광현미경하에서 강한 형광 빛을 나타내었다. 녹조류 16개 균주의 형태적인 특징을 조사한 결과 C. vulgalis, C. sorokiniana, C. pyrenoidosa, C. kessleri, C. emersonii, and Chlamydomonas sp.의 2개 속 6개종으로 동정되었다. 담수 녹조류의 세포 크기는 종마다 다양한 변이를 보였다. 대부분의 담수 녹조류의 세포형태는 구형이었다. Chlamydomonas sp.는 타원형이었고 Chlorella sorokiniana는 구형과 타원형이 섞여 있었다. 6개 녹조류 종류 중 Chlamydomonas sp.를 제외한 모든 균주는 편모가 없었다. Chlamydomonas sp. 1개 균주와 C. sorokiniana 5개 균주는 세포에서 점질물을 분비하였다.

Alantolactone의 구조와 생물학적 활성 (Relationship Between Biological Activity and Structure of Alantolactone)

  • 권영명
    • Journal of Plant Biology
    • /
    • 제17권2호
    • /
    • pp.69-83
    • /
    • 1974
  • To elucidate the relationship between chemical structure and biological activity of alantolactone, and also to investigate the relationship between the growth of cells and the respiration of Chlorella pyrenoidosa affected by alantolactone, alantolactone and isoalantolactone were isolated from Inula helenium L., and di-, and tetrahydroalantolactones were prepared by the hydrogenation. At a concentration of 5$\times$10-5M alantolactone, the growth rate of Chlorella was greatly reduced. The viability of cells was also reduced over 50% within 2 hr at a concentration of 2.5$\times$10-4M alantolactone. However, oxygen uptake was increased by 20% over 3 hr. And 14CO2 production from glucose-1-14C, glucose-6-14C and 14C-acetate-U.L. was also increased by alantolactone. Biological activityof alantolactone was significantly reduced by cysteine, reduced glutathione or cystine but not by tryptophan or histidine. It was detected by spectrophotometrically and by TLC that alantolactone was also reacted with thiols except cystine. The solution of alantolactone reached with thiol gave the UV absorption spectrum of $\alpha$-saturated ${\gamma}$-lactone, and most of SH groups were disappeared by the addition reaction. From the reaction mixture of alantolactone and cysteine, a lactone adduct was isolated and purified. Isoalantolactone had shown similar activity as alantolactone, however, it was appeared that di-, and tetrahydroalantolactones were not only inactive biologically but also in vitro. It was concluded that there was no correlationship between increased respiration rate and mortality of Chlorella. During the respiration TCA cycle was activated, however it was uncertain that the activation of EMP or HMP was also appeared. Alantolactone and isoalantolactone were biologically active compounds but others were inactive. The reactivity of $\alpha$-methylene ${\gamma}$-lactone moiety toward SH group was principally responsible for its biological activity in sesquiterpene lactones.

  • PDF