DOI QR코드

DOI QR Code

Carbon Dioxide Mitigation by Microalgal Photosynthesis

  • Lee Jeong, Mi-Jeong (Plant Biotechnology Research Center, Forest Resources and Enivironmental Science, Michigan Technological University) ;
  • Gillis, James M. (Institute of Materials Processing, Michigan Technological University) ;
  • Hwang, Jiann-Yang (Institute of Materials Processing, Michigan Technological University)
  • Published : 2003.12.20

Abstract

Algal growth studies of Chlorella strains were conducted in a batch mode with bench type experiments. Carbon dioxide fixation rates of the following green microalgae were determined: Chlorella sp. H84, Chlorella sp. A2, Chlorella sorokiniana UTEX 1230, Chlorella vulgaris, and Chlorella pyrenoidosa. C. vulgaris, among other strains of microalgae, showed the highest growth rate (1.17 optical density/5 days). Cultivating conditions for C. vulgaris that produced the highest growth rate were at concentrations of 243 ${\mu}g\;CO_2$/mL, 10 mM ammonia, and 1 mM phosphate, with an initial pH range of 7-8.

Keywords

References

  1. Apel, W. A.; Walton, M. R.; Dugan, P. R. Fuel Processing Technology 1994, 40, 139. https://doi.org/10.1016/0378-3820(94)90138-4
  2. Mustacchi, C.; Armenante, P.; Cena, V. Carbon Dioxide Disposal in the Ocean; Williams, J., Ed.; Proceedings of IIASA Workshop, 1978; p 283.
  3. Sakai, N.; Sakamoto, Y., Kishimoto, N.; Chihara, M.; Karube, I. Chlorella Strains From Springs Tolerant to High Temperature and High $CO_2$; International Marine Biotechnology Conference, 1994.
  4. Guterman, H.; Yaakov, S. B. Biotechnol. Bioeng. 1990, 35, 417. https://doi.org/10.1002/bit.260350409
  5. Nishikcawa, N. Amsterdam Meeting, 1992.
  6. Laws, E. A.; Taguchi, S.; Hirata, J.; Pang, L. Biotechnol. Bioeng. 1988, 32, 140. https://doi.org/10.1002/bit.260320204
  7. Javanmardian, P.; Palsson, B. O. Biotechnol. Bioeng. 1991, 38, 1182. https://doi.org/10.1002/bit.260381010
  8. De Pauw, N.; Persoone, G. Micro-algae for Aquaculture; Borowitzka, L. J., Ed.; Cambridge University Press: Cambridge, 1988; p 197.
  9. Becker, E. W. Micro-algae for Human and Animal Consumption; Borowitzka, M. A., Borowitzka, L. J., Eds.; Cambridge University Press: Cambridge, 1988; p 153.

Cited by

  1. Microalgae: The Potential for Carbon Capture vol.60, pp.9, 2010, https://doi.org/10.1525/bio.2010.60.9.9
  2. Concentrations and Light Intensities vol.53, pp.3, 2011, https://doi.org/10.5187/JAST.2011.53.3.261
  3. vol.36, pp.1, 2013, https://doi.org/10.1002/ceat.201100722
  4. Municipal Wastewater Treatment and Microbial Diversity Analysis of Microalgal Mini Raceway Open Pond vol.48, pp.3, 2012, https://doi.org/10.7845/kjm.2012.036
  5. Microalgae: a promising tool for carbon sequestration vol.18, pp.1, 2013, https://doi.org/10.1007/s11027-012-9393-3
  6. Carbonic Anhydrase: An Efficient Enzyme with Possible Global Implications vol.2013, pp.1687-8078, 2013, https://doi.org/10.1155/2013/813931
  7. Comparative Analyses of Three Chlorella Species in Response to Light and Sugar Reveal Distinctive Lipid Accumulation Patterns in the Microalga C. sorokiniana vol.9, pp.4, 2014, https://doi.org/10.1371/journal.pone.0092460
  8. in mixotrophic culture vol.91, pp.3, 2015, https://doi.org/10.1002/jctb.4623
  9. Evaluation of photosynthetic efficacy and CO2 removal of microalgae grown in an enriched bicarbonate medium vol.6, pp.1, 2016, https://doi.org/10.1007/s13205-015-0314-5
  10. by Using a Microalgae Culture Recycle Solution vol.40, pp.12, 2017, https://doi.org/10.1002/ceat.201600409
  11. Effects of Environmental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review vol.6, pp.9, 2013, https://doi.org/10.3390/en6094607
  12. Biofertilizing Effect of Chlorella sorokiniana Suspensions on Wheat Growth pp.1435-8107, 2018, https://doi.org/10.1007/s00344-018-9879-7
  13. sp. using optimized minimal nutrients and flocculants – a potential platform for mass cultivation pp.1479-487X, 2020, https://doi.org/10.1080/09593330.2018.1531939
  14. concentrations induce an intense biomass production vol.132, pp.3, 2008, https://doi.org/10.1111/j.1399-3054.2007.01015.x
  15. The air-lift photobioreactors with flow patterning for high-density cultures of microalgae and carbon dioxide removal vol.9, pp.3, 2009, https://doi.org/10.1002/elsc.200800113
  16. Microalgal biomass production and carbon dioxide sequestration from an integrated ethanol biorefinery in Iowa: A technical appraisal and economic feasibility evaluation vol.35, pp.9, 2003, https://doi.org/10.1016/j.biombioe.2011.05.014
  17. Current status and challenges on microalgae-based carbon capture vol.10, pp.None, 2003, https://doi.org/10.1016/j.ijggc.2012.07.010
  18. Conversion of microalgae to biofuel vol.16, pp.6, 2012, https://doi.org/10.1016/j.rser.2012.03.047
  19. 미세조류 옥외 배양시스템을 이용한 바이오디젤 생산 및 도시하수 영양 염류 제거 vol.41, pp.2, 2003, https://doi.org/10.4014/kjmb.1301.01001
  20. Performance Evaluation of a Bubble Column Photobioreactor for Carbon Dioxide Sequestration by Chlorella vulgaris vol.39, pp.12, 2014, https://doi.org/10.1007/s13369-014-1390-2
  21. 미세조류 옥외배양 시스템을 이용한 돈분 액체 비료의 영양염류 제거 및 바이오디젤 생산 vol.32, pp.1, 2003, https://doi.org/10.11626/kjeb.2014.32.1.026
  22. Effect of carbon dioxide injection on photosynthetic wastewater treatment using microalgaeChlorella vulgarisandEuglena gracilis vol.54, pp.13, 2003, https://doi.org/10.1080/19443994.2014.923197
  23. Toxicity and bioremediation of As(III) and As(V) in the green microalgae Botryococcus braunii: A laboratory study vol.19, pp.2, 2003, https://doi.org/10.1080/15226514.2016.1207601
  24. Capability of microalgae for local saline sewage treatment towards biodiesel production vol.82, pp.None, 2003, https://doi.org/10.1088/1755-1315/82/1/012008
  25. A novel two-stage culture strategy used to cultivate Chlorella vulgaris for increasing the lipid productivity vol.211, pp.None, 2019, https://doi.org/10.1016/j.seppur.2018.10.056
  26. Effects of carbon concentration, pH, and bubbling depth on carbon dioxide absorption ratio in microalgae medium vol.26, pp.32, 2003, https://doi.org/10.1007/s11356-019-06287-4
  27. Sequestration of CO2 using microorganisms and evaluation of their potential to synthesize biomolecules vol.55, pp.2, 2003, https://doi.org/10.1080/01496395.2019.1577453
  28. Optimal and strategic delivery of CO2 for Chlorella minutissima-mediated valorization of domestic wastewater with concomitant production of biomass and biofuel vol.4, pp.12, 2020, https://doi.org/10.1039/d0se00296h