• Title/Summary/Keyword: C-signal

Search Result 4,123, Processing Time 0.035 seconds

Helicobacter pylori vacA Mosaicism and New Primers for vacA Signal Sequence Indigenous to Korea (Helicobacter pylori vacA 대립유전자의 Mosaicism과 Signal Sequence의 한국고유 시발체)

  • Ahn, Yeon-Hwa;Kim, Heung-Ryel;Lee, Ji-Eun;Hwang, Tae-Sook;Choe, Yon-Ho
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.4 no.2
    • /
    • pp.155-160
    • /
    • 2001
  • Purpose: Helicobacter pylori has been known to have diverse vacA allelic types. The purpose of the study was to identify vacA diversity in Korea and design new primers for signal sequence alleles indigenous to Korea. Methods: Fifty antral biopsy specimens, which had been proven to be H. pylori-positive, were examined for vacA status; signal sequence and mid-region. After PCR amplification and DNA sequencing, vacA alleles of Korean H. pylori strains were compared with those from other countries. Results: Among Korean H. pylori strains vacA alleles with all combinations of signal sequence and mid-region were found, with the exception of s1b or s2. vacA genotype s1c/m1 was predominant in Korea. We found that GGGAGCGTTR in s1a and GGGGYTATTG in s1c were the indigenous sequences to Korea and constructed the new Korean specific primers for the vacA signal sequence; VASK-F, VASK-R, S1AK-F, and S1CK-F. Conclusion: This study showed that s1c/m1 is the predominant type of vacA allele in Korea. We designed new primers for the vacA signal sequence.

  • PDF

Roundabout Signal Metering Operation Methods by Considering Approach Lane's Degree of Saturation (접근로별 포화도를 고려한 Roundabout Signal Metering 운영방법에 관한 연구)

  • Ahn, Woo-Young;Lee, So-Young
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.217-226
    • /
    • 2013
  • PURPOSES : Under the capacity conditions with balanced approach flows, roundabouts give less delay than existing signalized intersections; however, flows over 450 vehicles/hour/lane with unbalanced approach flow conditions, roundabouts efficiency drops due to the short time difference between the critical gap and the follow-up headway. The purpose of this study is developing a roundabout Signal Metering operation method by considering approach lanes degree of saturation. METHODS : A four-way-approach with one-lane roundabout is selected to compare the Signal Metering performance for the case of 16 different unbalanced flow conditions. Based on these traffic conditions, the performance is evaluated for 64 different cases of Signal Metering combinations by using SIDRA software. A degree of saturation(V/C ratio) sum for two adjoined approaches is used for the performance index of choosing Metered Approach and Controlling Approach. RESULTS : When the V/C ratio sum is 0.29~0.81 and Metered Approach flow is less than Controlling Approach flow, the average delay saving per vehicle is about 7 seconds; however, after this rage the delay saving decreases gradually until the V/C ratio sum reaches around 1.0. The range of V/C ratio sum 0.93~1.09 provides average delay saving per vehicle about 3 seconds. In case of V/C ratio sum is grater than 1.0 and the flows of Metered Approach is grater than Controlling Approach, the average delay per vehicle increases 3~11 times respectively. CONCLUSIONS : As expected, the Signal Metering provides substantial improvements in delay saving for the case of V/C ratio sum is 0.3~1.0 under the traffic flow conditions of Metered Approach is less than Controlling Approach.

Analysis of Partial Discharge Signal Using Wavelet Transform (웨이브렛 변환을 이용한 부분방전 신호의 분석)

  • Lee, Hyun-Dong;Kim, Chung-Nyun;Park, Kwang-Seo;Lee, Kwang-Sik;Lee, Dong-In
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.11
    • /
    • pp.616-621
    • /
    • 2000
  • This paper deals with the multiresolution analysis of wavelet transform for partial discharge(PD). Test arrangement is based on the needle-plane electrode system and applied AC high voltage. The measured PD signal was decomposed into "approximations" and "details". The approximation are the high scale, low-frequency components of the PD signal. The details are the low-scale, high frequency components. The decomposition process are iterated to 3 level, with successive approximation being decomposed in turn, so that PD signal is broken down into many lower-resolution components. Through the procedure of signal wavelet transform, signal noise extraction and signal reconstruction, the signal is analyzed to determine the magnitude of PD.

  • PDF

Analysis of Loran-C Signal Quality in the Eastern Sea Area, Republic of Korea (동해권역 Loran-C 신호품질 분석)

  • Bae, Kyu-Man;Lim, Young-Man
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.190-192
    • /
    • 2017
  • The manufacture of current Loran-C signal receiver has been discontinued and there are no spare parts for that. eLoran system is being developed. Judging from these facts, it is necessary to purchase eLoran receivers which also can receive Loran-C signal. Furthermore, the coverage of Loran-C has been decreased as the closure of transmitting stations in Japan. The current monitor station in Ganjeolgot, Ulsan shall be moved to a new place.

  • PDF

Quantitative Analysis of t-Cinnamaldehyde of Cinnamomum cassia by $^1H-NMR$ Spectrometry ($^1H-NMR$을 이용한 계피의 t-cinnamaldehyde 정량분석)

  • Song, Myoung-Chong;Yoo, Jong-Su;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.267-272
    • /
    • 2005
  • trans-Cinnamaldehyde, a major component of Cinnamomum cassia, was quantitatively analyzed using the $^1H-NMR$ spectrometry. Applicability of this method was confirmed through observing the variation of chemical shift in the $^1H-NMR$ spectrum of t-cinnamaldehyde and the integration value according to various sample concentrations or running temperatures. When the $^1H-NMR$ spectrometry was run for t-cinnamaldehyde (7.1429 mg/ml) at 19, 25, 30, 40 and $50^{\circ}C$, the chemical shifts of the doublet methine signal due to an aldehyde group were observed at 9.7202, 9.7184, 9.7169, 9.7142 and 9.7124 ppm, respectively, to imply that the running temperature had no significant variation in the chemical shift of the signal. The integration values of the signal were $1.37\;(19^{\circ}C),\;1.37\;(25^{\circ}C),\;1.37\;(30^{\circ}C),\;1.37(40^{\circ}C)$ and $1.37(50^{\circ}C)$, respectively, to also indicate running temperature gave no effect on the integration value. When the sample solutions with various concentrations such as 0.4464, 0.8929, 1.7857, 3.5714, 7.1429 and 14.286 mg/ml were respectively measured for the $^1H-NMR$ at $25^{\circ}C$, the chemical shifts of the aldehyde group were observed at 9.7206, 9.7201, 9.7196, 9.7192, 9.7185 and 9.7174 ppm. Even though the signal was slightly shifted to the high field in proportion to the increase of sample concentration, the alteration was not significant enough to applicate this method. The calibration curve for integration values of the doublet methine signal due to the aldehyde group vs the sample concentration was linear and showed very high regression rate ($r^2=1.0000$). Meantime, the $^1H-NMR$ spectra (7.1429 mg/ml $CDCl_3,\;25^{\circ}C$) of t-cinnamaldehyde and t-2-methoxycinnamaldehyde, another constituent of Cinnamomum cassia, showed the chemical shifts of the aldehyde group as ${\delta}_H$ 9.7174 (9.7078, 9.7270) for the former compound and ${\delta}_H$ 9.6936 (9.6839, 9.7032) for the latter one. The difference of the chemical shift between two compounds was big enough to be distinguished using the NMR spectrometer with 0.45 Hz of resolution. The contents of cinnamaldehyde in Cinnamomum cassia, which were respectively extracted with n-hexane, $CHCl_3$, and EtOAc, were determiend as 94.2 \;mg/g (0.94%), 137.6 mg/g (1.38%) and 140.1 mg/g(1.40%) t-cinnamaldehyde in each extract, respectively, by using the above method.

Design of the Satellite Beacon Receiver Using Array Based Digital Filter (다중배열 디지털필터를 이용한 위성비콘 수신기 설계)

  • Lee, Kyung-Soon;Koo, Kyung-Heon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.10
    • /
    • pp.909-916
    • /
    • 2016
  • The beacon receiver is an equipment which detects and measures the signal strength of transmitting satellite beacon signal. Beacon signals transmitted by satellites are low power continuous wave(CW) signals without any modulation intended for antenna steering to satellite direction and power control purposes on the earth. The beacon signal detection method using a very narrow band analog filter and RSSI(Received Signal Strength Intensity) has been typically used. However, it requires the implementation to track the frequency at the beacon receiver, thus a beacon frequency variation of the satellite due to temperature changes and long-term operation. Therefore, in this paper, the beacon signal detection receiver is designed by using a very narrow band digital filter array for a faster acquisition and SNR(Signal to Noise Ratio) method detection. For this purpose, by calculating the satellite link budget with the rain attenuation between satellite and ground station, and then extracting the received $C/N_o$ of the beacon signal, this work derives the bandwidth and the array number of the configured digital filter that gives the required C/N.

GPS L1, L2C Signal Acquisition Performance of GPS Software Receiver with respect to Pseudolite Pulsing Scheme (의사위성의 펄싱 방법에 대한 GPS L2C 신호획득 성 소능프분트석웨어 수신기의 L1, L2C 신호획득 성능분석)

  • Kwon, Keum-Cheol;Yand, Cheol-Kwan;Shim, Duk-Sun;Chung, Tae-Sang;Kee, Chand-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.16-26
    • /
    • 2012
  • Pseudolites are ground-based transmitters that can be configured to emit GPS-like signals for enhancing the GPS by providing increased accuracy, integrity, and availability. However, a pseudolite (PL) can interfere with GPS satellite signals while it is transmitting or cause saturation to automatic gain control circuit. To solve these problems pulsing scheme is used, which transmits PL signal during a short period of time. In this paper the effect of the number of PL and pulsing scheme on the software GPS L1 and L2C signal acquisition performance is studied for the three pulsing schemes such as static pulsing, sweep pulsing, and pseudo random pulsing. For GPS L1 signal, static pulsing shows the best signal acquisition and tracking performance with one PL, and random pulsing shows the best performance with more than or equal to two PLs. For GPS L2C signal, all three pulsing schemes show the similar signal acquisition and tracking performance, but static pulsing shows a little better performance. For GPS L1 and L2C signals, software GPS receivers can do positioning with up to three PLs.

Comparison on Various Acquisition Method for GPS L1 C/A (GPS L1 C/A 기반의 신호 획득부 구현 및 비교)

  • Park, Jiwoon;Yoo, Hoyoung
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.649-653
    • /
    • 2020
  • GPS is a representative satellite navigation system that provides users with accurate location and time information. GPS L1 C / A is opened for civilian and thus utilized in various fields. When the satellite signal reaches the receiver, signal acquisition unit of the digital signal processing hardware searches and acquires the signal among visible satellites. The signal acquisition unit has different implementation methods depending on the signal searching method, such as serial search acquisition, parallel frequency search, parallel code phase search. In this paper, we compare and analyze the three representative acquisition hardwares using live GPS L1 C/A signals. According to the comparison, the parallel code phase search acquisition outperforms the other methods due to reduction of the number of the searchings and a high resolution.

Cinnamomum camphora Leaves Alleviate Allergic Skin Inflammatory Responses In Vitro and In Vivo

  • Kang, Na-Jin;Han, Sang-Chul;Yoon, Seok-Hyun;Sim, Jae-Yeop;Maeng, Young Hee;Kang, Hee-Kyoung;Yoo, Eun-Sook
    • Toxicological Research
    • /
    • v.35 no.3
    • /
    • pp.279-285
    • /
    • 2019
  • In this study, we investigated the therapeutic potential of Cinnamomum camphora leaves on allergic skin inflammation such as atopic dermatitis. We evaluated the effects of C. camphora leaves on human adult low-calcium high-temperature keratinocytes and atopic dermatitis mice. C. camphora leaves inhibited Macrophage-derived chemokine (an inflammatory chemokine) production in $interferon-{\gamma}$ (10 ng/mL) stimulated Human adult low-calcium high-temperature keratinocytes in a dose dependent manner. C. camphora leaves suppressed the phosphorylation of janus kinase signal transducer and activator of transcription 1. C. camphora leaves also suppressed the phosphorylation of extracellular signal-regulated kinase 1/2, a central signaling molecule in the inflammation process. These results suggest that C. camphora leaves exhibits anti-inflammatory effect via the phosphorylation of signal transducer and activator of transcription 1 and extracellular signal-regulated kinase 1/2. To study the advanced effects of C. camphora leaves on atopic dermatitis, we induced experimental atopic dermatitis in mice by applying 2,4-dinitrochlorobenzene. The group treated with C. camphora leaves (100 mg/kg) showed remarkable improvement of atopic dermatitis symptoms: reduced serum immunoglobulin E levels, smaller lymph nodes with reduced thickness and length, decreased ear edema, and reduced levels of inflammatory cell infiltration in the ears. Interestingly, the effects of C. camphora leaves on atopic dermatitis symptoms were stronger than those of hydrocort cream, a positive control. Taken together, C. camphora leaves showed alleviating effects on the inflammatory chemokine production in vitro and atopic dermatitis symptoms in vivo. These results suggest that C. camphora leaves help in the treatment of allergic inflammation such as atopic dermatitis.

The Fast Signal Acquisition Scheme for a GPS Ll/L2C Correlator (GPS Ll/L2C 상관기를 위한 빠른 신호 획득 기법)

  • Lim Deok-Won;Moon Sung-Wook;Park Chan-Sik;Lee Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.765-772
    • /
    • 2006
  • The L2 Civil Signal (L2CS) will be transmitted by modernized IIR(IIR-M), IIF and all subsequent GPS satellites. It contains two codes of different length; CM code contains 10,230chips, repeats every 20milliseconds and is modulated with message data, and CL code contains 767,250chips, repeats every 1.5second Z-count and has no data modulation. And the message data is encoded for Forward Error Correction(FEC). The long code length is useful for weak signal, but it also requires very long acquisition time. Therefore, the structure of GPS Ll/L2C Correlator and the fast acquisition scheme are proposed in this paper.