• Title/Summary/Keyword: C-reducible metric

Search Result 6, Processing Time 0.015 seconds

ON THE SPECIAL FINSLER METRIC

  • Lee, Nan-Y
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.457-464
    • /
    • 2003
  • Given a Riemannian manifold (M, $\alpha$) with an almost Hermitian structure f and a non-vanishing covariant vector field b, consider the generalized Randers metric $L\;=\;{\alpha}+{\beta}$, where $\beta$ is a special singular Riemannian metric defined by b and f. This metric L is called an (a, b, f)-metric. We compute the inverse and the determinant of the fundamental tensor ($g_{ij}$) of an (a, b, f)-metric. Then we determine the maximal domain D of $TM{\backslash}O$ for an (a, b, f)-manifold where a y-local Finsler structure L is defined. And then we show that any (a, b, f)-manifold is quasi-C-reducible and find a condition under which an (a, b, f)-manifold is C-reducible.

CONFORMAL TRANSFORMATION OF LOCALLY DUALLY FLAT FINSLER METRICS

  • Ghasemnezhad, Laya;Rezaei, Bahman
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.407-418
    • /
    • 2019
  • In this paper, we study conformal transformations between special class of Finsler metrics named C-reducible metrics. This class includes Randers metrics in the form $F={\alpha}+{\beta}$ and Kropina metric in the form $F={\frac{{\alpha}^2}{\beta}}$. We prove that every conformal transformation between locally dually flat Randers metrics must be homothetic and also every conformal transformation between locally dually flat Kropina metrics must be homothetic.

On Semi C-Reducibility of General (α, β) Finsler Metrics

  • Tiwari, Bankteshwar;Gangopadhyay, Ranadip;Prajapati, Ghanashyam Kr.
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.2
    • /
    • pp.353-362
    • /
    • 2019
  • In this paper, we study general (${\alpha}$, ${\beta}$) Finsler metrics and prove that every general (${\alpha}$, ${\beta}$)-metric is semi C-reducible but not C2-like. As a consequence of this result we prove that every general (${\alpha}$, ${\beta}$)-metric satisfying the Ricci flow equation is Einstein.

SOME PROPERTIES ON FINSLER SPACES WITH A QUARTIC METRIC

  • Lee, Il-Yong;Jun, Dong-Gum
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.12 no.1
    • /
    • pp.23-31
    • /
    • 1999
  • The purpose of the present paper is devoted to a study of some properties on spaces with a quartic metric from the standpoint of Finsler geometry.

  • PDF

The induced and intrinsic connections of cartan type in a Finslerian hypersurface

  • Park, Hong-Suh;Park, Ha-Yong
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.2
    • /
    • pp.423-443
    • /
    • 1996
  • The main purposer of the present paper is to derive the induced (Finsler) connections on the hypersurface from the Finsler connections of Cartan type (a Wagner, Miron, Cartan C- and Cartan Y- connection) of a Finsler space and to seek the necessary and sufficient conditions that the induced connections coincide with the intrinsic connections. And we show the differences of quantities with respect to the respective a connections and an induced Cartan connection. Finally we show some examples.

  • PDF

THE INDUCED AND INTRINSIC CONNECTIONS OF BERWALD TYPE IN A FINSLERIAN HYPERSURFACE

  • Ha Yong Park;Hong Suh Park
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.383-391
    • /
    • 1997
  • The main purpose of the present paper is to derive the induced (Finsler) connections on the hypersurface from the Finsler connections of Berwald type (a Berwald h-recurrent connection and a $F\Gamma$' connection) of a Finsler space and to seek the necessary and sufficient conditions that the induced connections coincide with the intrinsic connections. And we show the quantities and relations with respect to the respective induced connections. Finally we show some examples.

  • PDF