• Title/Summary/Keyword: C-ion irradiation

Search Result 123, Processing Time 0.023 seconds

Enhanced upper critical fields in low energy iron-irradiated single-crystalline MgB2 thin films

  • Pham, Duong;Jung, Soon-Gil;Tran, Duc H.;Park, Tuson;Kang, Won Nam
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.3
    • /
    • pp.18-21
    • /
    • 2019
  • We studied the effect of Fe ion irradiation on the upper critical field ($H_{c2}$) of 410 nm single-crystalline $MgB_2$ thin films. The irradiation energy was fixed at 140 keV when we increased the irradiation doses from $1{\times}10^{14}ion/cm^2$ to $4{\times}10^{14}ion/cm^2$. We found that $H_{c2}$ significantly increase with increasing irradiation dose, despite the low irradiation energy. The enhancement of $H_{c2}$ could be explained by the reduction of electron mean free path caused by defects induced from irradiation, leading to a decrease of coherence length (${\xi}$). We also discussed the effect of irradiation on temperature-dependent resistivity in details.

A study on liquid crystal alignment characteristics by the properties of hydrogenated amorphous carbon thin films (a-C:H 박막의 물성 변화에 따른 액정 배향 특성에 관한 연구)

  • Lee, Dae-Kyu;Rho, Soon-Joon;Baik, Hong-Koo;Hwang, Jeoung-Yeon;Cho, Yong-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.839-844
    • /
    • 2002
  • This letter focuses on the liquid crystal alignment characteristics according to the properties of hydrogenated amorphous carbon(a-C:H) thin film deposited by RPECVD(Remote Plasma Enhanced Chemical Vapor Deposition) method using $C_2H_2$ and He gases. The properties of the deposited thin films were controlled by the ion beam irradiation time and ion beam energy. The results show that not ion beam energy but ion beam irradiation time plays an important role in the properties of a-G:H thin films. As the ion beam irradiation time increases, not only the sp2 concentration in a-G:H thin films but also liquid crystal pretilt angle was varied.

  • PDF

Mechanism of Wrinkle Formation on Styrene-Butadiene-Styrene Block Copolymer via Ion-Beam Irradiation (Styrene-Butadiene-Styrene Block Copolymer 위 이온빔 조사를 이용한 주름 구조 생성 메커니즘 연구)

  • Lee, Ju Hwan;Kim, Dai-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.130-135
    • /
    • 2021
  • Wrinkle patterns were fabricated on styrene-butadiene-styrene (SBS) block copolymer substrates using ion-beam (IB) irradiation with various intensities. The wavelength of the wrinkle pattern increased as the IB intensity was increased from 800 to 1,600 eV. IB irradiation-induced changes in the surface properties that were confirmed via physicochemical surface analyses. X-ray photoelectron spectroscopy analysis revealed chemical surface reformation due to the IB irradiation, resulting in C-O/C=O bonds after IB irradiation that were not reported before. These results indicate that the surface chemical modification caused by IB irradiation is strongly related to the surface modulus, which is important when fabricating wrinkle patterns. Furthermore, a strong IB irradiation induced a strong compressive strain; thus the size of the wrinkle pattern was increased.

Changes in superconducting properties of Nb films irradiated with Kr ion beam

  • Minju Kim;Joonyoung Choi;Chang-Duk Kim;Younjung Jo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.1
    • /
    • pp.5-9
    • /
    • 2024
  • This study investigated the effect of Kr ion beam irradiation on the superconducting properties of Nb thin films, which are known for their high superconducting transition temperature (Tc) at ambient pressure among single elements. Using the Stopping and Range of Ions in Matter (SRIM) program, we analyzed the distribution of Kr ions and displacement per atom (DPA) after irradiation, finding a direct correlation between irradiation amount and DPA. In samples with stronger beam energy, deeper ion penetration, fewer ions remained, and higher DPA values were observed. X-ray diffraction (XRD) revealed that the Nb (110) peak at 38.5° weakened and shifted with increasing irradiation. Tc decreased in all samples after irradiation, more significantly in those with higher beam energy. Irradiation raised resistivity of the film and lowered the residual-resistivity ratio (RRR). AC susceptibility measurements were also consistent with these findings. This research could potentially lead to more efficient and powerful superconducting devices and a better understanding of superconducting materials.

Liquid Crystal Orientation Mechanism: Competition Between Rubbing and Ion-beam Method

  • Kim, Ji-Ho;Han, Jeong-Min;Shon, Jin-Geun
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1457-1461
    • /
    • 2013
  • The effect of liquid crystal (LC) alignment on a homeotropic polyimide (PI) surface induced by ion beam (IB) irradiation and rubbing process was studied. LC alignment was not affected by IB irradiation with an exposure time of 10 s, and an IB irradiation with an exposure time of 60 s more effectively oriented the LCs on the PI layer than the rubbing process. It was assumed that the LC alignment depended on the C-O bonds created from the C=O bonds on the PI surface broken by IB irradiation after an exposure time of 60 s, which resulted in a strong surface energy that transformed the homeotropic LC alignment to homogeneous states.

Homogeneous Alignment Characteristics of Liquid Crystal Molecules on Solution-Derived Lanthanum Zinc Oxide Film with Ion-Beam Irradiation (이온빔 조사된 용액 공정 기반 LaZnO 박막 위 액정 분자의 수평 배향 특성)

  • Oh, Byeong-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.382-386
    • /
    • 2019
  • The alignment characteristics of liquid crystal (LC) molecules on a solution-derived lanthanum zinc oxide (LZO) film under ion-beam irradiation were demonstrated. Using the solution process, an LZO film was fabricated on the glass substrate and cured at $100^{\circ}C$. Afterwards, ion-beam irradiation was performed following the LC alignment method. Using this film, an LC cell was fabricated and the characteristics of the LC alignment were verified. Cross polarizing microscopy and the crystal rotation method were used to investigate the alignment state of the LC molecules on the LZO films. Furthermore, field emission scanning electron microscopy and X-ray photoelectron spectroscopy were used to explore the effect of the ion-beam irradiation on the LZO film. Through these, it was confirmed that the ion-beam irradiation induced surface modification, which demonstrated anisotropic physical and chemical surface characteristics. Due to this, uniform LC alignment was achieved. Finally, the residual DC and anchoring energy of the LC cell based on the LZO films were measured using a capacitance-voltage curve.

A Study on the Magnetic Properties of Ion Irradiated Cu/Co Multilayer System

  • Kim, T.Y.;Chang, G.S.;Son, J.H.;Kim, S.H.;Shin, S.W.;Chae, K.H.;Sung, M.C.;Lee, J.;Jeong, K.;Lee, Y.P.;;Whang, C.N
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.163-163
    • /
    • 2000
  • In this research, we used the ion irradiation technique which has an advantae in improving intentionally the properties of surface and interface in a non-equilibrium, instead of the conventional annealing method which has been known to improve the material properties in the equilibrium stat. Cu/Co multilayered films were prepared on SiN4/SiO2/Si substrates by the electron-beam evaporation for the Co layers and the thermal evaporation for the Cu layers in a high vacuum. The ion irradiation with a 80keV Ar+ was carried out at various ion doses in a high vacuum. Hysteresis loops of the films were investigated by magneto-optical polar Kerr spectroscopy at various experimental conditions. The change of atomic structure of the films before and after the ion irradiation was studied by glancing angle x-ray diffraction, and the intermixing between Co and Cu sublayers was confirmed by Rutherford backscattering spectroscopy. The surface roughness and magneto-resistance were measured by atomic force microscopy and with a four-point probe system, respectively. During the magneto-resistance measurement, we changed temperature and the direction of magnetization. From the results of experiments, we found that the change at the interfaces of the Cu/Co multilayered film induced by ion irradiation cause the change of magnetic properties. According to the change in hysteresis loop, the surface inplane component of magnetic easy axis was isotropic before the ion irradiation, but became anisotropic upon irradiation. It was confirmed that this change influences the axial behavior of magneto-resistance. Especially, the magneto-resistance varied in accordance with an external magnetic field and the direction of current, which means that magneto-resistance also shows the uniaxial behavior.

  • PDF

Evaluation of radiation resistance of an austenitic stainless steel with nanosized carbide precipitates using heavy ion irradiation at 200 dpa

  • Ji Ho Shin ;Byeong Seo Kong;Chaewon Jeong;Hyun Joon Eom;Changheui Jang;Lin Shao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.555-565
    • /
    • 2023
  • Despite many advantages as structural materials, austenitic stainless steels (SSs) have been avoided in many next generation nuclear systems due to poor void swelling resistance. In this paper, we report the results of heavy ion irradiation to the recently developed advanced radiation resistant austenitic SS (ARES-6P) with nanosized NbC precipitates. Heavy ion irradiation was performed at high temperatures (500 ℃ and 575 ℃) to the damage level of ~200 displacement per atom (dpa). The measured void swelling of ARES-6P was 2-3%, which was considerably less compared to commercial 316 SS and comparable to ferritic martensitic steels. In addition, increment of hardness measured by nano-indentation was much smaller for ARES-6P compared to 316 SS. Though some nanosized NbC precipitates were dissociated under relatively high dose rate (~5.0 × 10-4 dpa/s), sufficient number of NbC precipitates remained to act as sink sites for the point defects, resulting in such superior radiation resistance.

Fast liquid crystal switching performance on indium zinc oxide films with low curing temperature via ion-beam irradiation (이온빔 조사된 저온 소성 인듐 아연 산화막을 이용한 액정의 고속 스위칭 특성 연구)

  • Oh, Byeong-Yun
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.904-909
    • /
    • 2019
  • Using the ion-beam irradiated indium zinc oxide (IZO) films which was cured at $100^{\circ}C$, uniform LC and homogeneous alignment of liquid crystal (LC) molecules was achieved. The IZO film was deposited on the glass substrate at the curing temperature of $100^{\circ}C$ and irradiated by the ion-beam which is an LC alignment method. To verify the LC alignment characteristics, polarizing optical microscope and the crystal rotation method were used. Additionally, it was confirmed that the LC cell with the IZO films had an enough thermal budget for high-quality LC applications. Field emission scanning electron microscope was conducted as a surface analysis to evaluate the effect of the ion-beam irradiation on the IZO films. Through this, it was revealed that the ion-beam irradiation induced rough surface with anisotropic characteristics. Finally, electro-optical (EO) performances of the twisted-nematic cells with the IZO films were collected and it was confirmed that this cell had better EO performances than the conventional rubbed polyimide. Furthermore, the polar anchoring energy was measured and a suitable value for stable LC device operation was achieved.

Effects of ion irradiation on microstructure and properties of zirconium alloys-A review

  • Yan, Chunguang;Wang, Rongshan;Wang, Yanli;Wang, Xitao;Bai, Guanghai
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.323-331
    • /
    • 2015
  • Zirconium alloys are widely used in nuclear reactors as structural materials. During the operation, they are exposed to fast neutrons. Ion irradiation is used to simulate the damage introduced by neutron irradiation. In this article, we briefly review the neutron irradiation damage of zirconium alloys, then summarize the effect of ion irradiation on microstructural evolution, mechanical and corrosion properties, and their relationships. The microstructure components consist of dislocation loops, second phase precipitates, and gas bubbles. The microstructure parameters are also included such as domain size and microstrain determined by X-ray diffraction and the S-parameter determined by positron annihilation. Understanding the relationships of microstructure and properties is necessary for developing new advanced materials with higher irradiation tolerance.