DOI QR코드

DOI QR Code

Mechanism of Wrinkle Formation on Styrene-Butadiene-Styrene Block Copolymer via Ion-Beam Irradiation

Styrene-Butadiene-Styrene Block Copolymer 위 이온빔 조사를 이용한 주름 구조 생성 메커니즘 연구

  • Lee, Ju Hwan (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Dai-Hyun (Department of Smart Electric, Korea Polytechnic)
  • 이주환 (연세대학교 전기전자공학부) ;
  • 김대현 (한국폴리텍대학 스마트전기학과)
  • Received : 2021.01.18
  • Accepted : 2021.02.02
  • Published : 2021.03.01

Abstract

Wrinkle patterns were fabricated on styrene-butadiene-styrene (SBS) block copolymer substrates using ion-beam (IB) irradiation with various intensities. The wavelength of the wrinkle pattern increased as the IB intensity was increased from 800 to 1,600 eV. IB irradiation-induced changes in the surface properties that were confirmed via physicochemical surface analyses. X-ray photoelectron spectroscopy analysis revealed chemical surface reformation due to the IB irradiation, resulting in C-O/C=O bonds after IB irradiation that were not reported before. These results indicate that the surface chemical modification caused by IB irradiation is strongly related to the surface modulus, which is important when fabricating wrinkle patterns. Furthermore, a strong IB irradiation induced a strong compressive strain; thus the size of the wrinkle pattern was increased.

Keywords

References

  1. D. Yan, K. Zhang, F. Peng, and G. Hu, Appl. Phys. Lett., 105, 071905 (2014). [DOI: https://doi.org/10.1063/1.4893596]
  2. P. Jurik, P. Slepicka, M. Nagyova, and V. Svorcik, Surf. Coat. Technol., 311, 344 (2017). [DOI: https://doi.org/10.1016/j.surfcoat.2017.01.030]
  3. T. Seki, D. Yamaoka, T. Takeshima, Y. Nagashima, M. Hara, and S. Nagano, Mol. Cryst. Liq. Cryst., 644, 52 (2017). [DOI: https://doi.org/10.1080/15421406.2016.1277329]
  4. R. J. Spontak and N. P. Patel, Curr. Opin. Colloid Interface Sci., 5, 333 (2000). [DOI: https://doi.org/10.1016/S1359-0294(00)00070-4]
  5. W. F. Lee and Y. J. Chen, J. Appl. Polym. Sci., 82, 2641 (2001). [DOI: https://doi.org/10.1002/app.2117]
  6. M. D. Romero-Sánchez, M. M. Pastor-Blas, J. M. Martin-Martinez, and M. J. Walzak, Int. J. Adhes. Adhes., 25, 358 (2005). [DOI: https://doi.org/10.1016/j.ijadhadh.2004.12.001]
  7. J. Y. Chung, A. J. Nolte, and C. M. Staffo, Adv. Mater., 23, 349 (2011). [DOI: https://doi.org/10.1002/adma.201001759]
  8. X. Cheng, B. Meng, X. Chen, M. Han, H. Chen, Z. Su, M. Shi, and H. Zhang, Small, 12, 229 (2016). [DOI: https://doi.org/10.1002/smll.201502720]
  9. N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, Nature, 393, 146 (1998). [DOI: https://doi.org/10.1038/30193]
  10. H. Hou, J. Yin, and X. Jiang, Adv. Mater., 28, 9126 (2016). [DOI: https://doi.org/10.1002/adma.201602105]
  11. T. Ohzono, H. Monobe, R. Yamaguchi, Y. Shimizu, and H. Yokoyama, Appl. Phys. Lett., 95, 014101 (2009). [DOI: https://doi.org/10.1063/1.3167547]
  12. B. Li, Y. P. Cao, X. Q. Feng, and H. Gao, Soft Matter, 8, 5728 (2012). [DOI: https://doi.org/10.1039/C2SM00011C]
  13. B. Wang, Y. Zhang, H. Zhang, Z. Chen, X. Xie, Y. Sui, X. Li, G. Yu, L. Hu, Z. Jin, and X. Liu, Carbon, 70, 75 (2014). [DOI: https://doi.org/10.1016/j.carbon.2013.12.074]
  14. M. Ramuz, B.C.K. Tee, J.B.H. Tok, and Z. Bao, Adv. Mater., 24, 3223 (2012). [DOI: https://doi.org/10.1002/adma.201200523]
  15. C. Lu, H. Mohwald, and A. Fery, Soft Matter, 3, 1530 (2007). [DOI: https://doi.org/10.1039/B712706E]
  16. P. C. Lin and S. Yang, Appl. Phys. Lett., 90, 241903 (2007). [DOI: https://doi.org/10.1063/1.2743939]