• Title/Summary/Keyword: C-finite type

Search Result 361, Processing Time 0.022 seconds

A Study on the Behavior of Elastic Stress Distribution in Front Fillet Welds by Finite Element Method (Front Fillet Welds에서의 탄성응력(彈性應力)의 거동(擧動)에 관(關)한 연구(硏究))

  • Dong-Suk,Um
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.12 no.2
    • /
    • pp.35-42
    • /
    • 1975
  • This paper investigates the distribution of stress and its behavior at the Root Toe in fillet welding joint. Furthermore, the stress components and principal stresses in the fillet welds are calculated by the finite element method. The distribution of stresses obtained numerically by means of the finite element method is also compared with the experimental results of two dimensional photoelasticity. A Cover plate type and Center block type of fillet welds are used as models for the numerical calculations covering the variations of 2 W/M(thickness of main plate/thickness of cover plate)=1 through 2W/M=4. The results obtained in these studies are summarized as follows; 1) When W2/M values become small, the stress concentration factors of the Root are larger than of the Toe in a C-type. Its critical value is 2W/M=3.00. However, no critical value exists in a T-type. 2) For 2W/M Values being avove 3.5 in a C-type and above 4.0 in a T-type, $K_R$ and $K_{\tau}$ become 1. 3) According to the differences of 2W/M values, the differences in stress become increasing in the Root but become decreasing in the Toe. These differences, however, disappear as the free boundary surface is approached. 4) The stress concentration factors of both the Root and Toe obtained by means of the finite element method have somewhat lower values than obtained by the photoelasiticity. But their principal stress directions coincide in either method. 5) It proves beneficial to employ the finite element method for two-dimensional plane stress analysis in front fillet welding joint.

  • PDF

A Study on the Mode Conversion Type-Single Resonance Mode Ultrasonic Motor Using Bolt Tightened Langevin Type Vibrator (볼트조임 란쥬반형 진동자를 이용한 모드변환형-단일공진모드 초음파 모터에 관한 연구)

  • 이재형;박태곤
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.123-127
    • /
    • 2004
  • Mode conversion type ultrasonic rotary motor using bolt tightened Langevin type vibrator was studied. Driving frequency of the motor, displacements and elliptical trajectories at tip of the coupler were simulated by finite element analysis program (ANSYS). Speed and torque of the fabricated motor were measured as functions of input voltage and load. As results, from FEA the driving frequency of 40.8[kHz] and useful elliptical trajectories were found. Fabricated motor rotated clockwise at frequency of 38.2[kHz]. Speed and torque of the motor were increased when the input voltage was increased. Maximum speed, torque and efficiency were 75[rpm], 0.14[Nm] and 6.28[%], respectively.

Displacement and stress distribution of the maxillofacial complex during maxillary protraction using palatal plates: A three-dimensional finite element analysis

  • Eom, Jusuk;Bayome, Mohamed;Park, Jae Hyun;Lim, Hee Jin;Kook, Yoon-Ah;Han, Seong Ho
    • The korean journal of orthodontics
    • /
    • v.48 no.5
    • /
    • pp.304-315
    • /
    • 2018
  • Objective: The purpose of this study was to analyze initial displacement and stress distribution of the maxillofacial complex during dentoskeletal maxillary protraction with various appliance designs placed on the palatal region by using three-dimensional finite element analysis. Methods: Six models of maxillary protraction were developed: conventional facemask (Type A), facemask with dentoskeletal hybrid anchorage (Type B), facemask with a palatal plate (Type C), intraoral traction using a Class III palatal plate (Type D), facemask with a palatal plate combined with rapid maxillary expansion (RME; Type E), and Class III palatal plate intraoral traction with RME (Type F). In Types A, B, C, and D, maxillary protraction alone was performed, whereas in Types E and F, transverse expansion was performed simultaneously with maxillary protraction. Results: Type C displayed the greatest amount of anterior dentoskeletal displacement in the sagittal plane. Types A and B resulted in similar amounts of anterior displacement of all the maxillofacial landmarks. Type D showed little movement, but Type E with expansion and the palatal plate displayed a larger range of movement of the maxillofacial landmarks in all directions. Conclusions: The palatal plate served as an effective skeletal anchor for use with the facemask in maxillary protraction. In contrast, the intraoral use of Class III palatal plates showed minimal skeletal and dental effects in maxillary protraction. In addition, palatal expansion with the protraction force showed minimal effect on the forward movement of the maxillary complex.

MEROMORPHIC SOLUTIONS OF A COMPLEX DIFFERENCE EQUATION OF MALMQUIST TYPE

  • Zhang, Ran-Ran;Huang, Zhi-Bo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1735-1748
    • /
    • 2014
  • In this paper, we investigate the finite order transcendental meromorphic solutions of complex difference equation of Malmquist type $$\prod_{i=1}^{n}f(z+c_i)=R(z,f)$$, where $c_1,{\ldots},c_n{\in}\mathbb{C}{\backslash}\{0\}$, and R(z, f) is an irreducible rational function in f(z) with meromorphic coefficients. We obtain some results on deficiencies of the solutions. Using these results, we prove that the growth order of the finite order solution f(z) is 1, if f(z) has Borel exceptional values $a({\in}\mathbb{C})$ and ${\infty}$. Moreover, we give the forms of f(z).

ON BOUNDARY REGULARITY OF HOLOMORPHIC CORRESPONDENCES

  • Ourimi, Nabil
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.17-30
    • /
    • 2012
  • Let D be an arbitrary domain in $\mathbb{C}^n$, n > 1, and $M{\subset}{\partial}D$ be an open piece of the boundary. Suppose that M is connected and ${\partial}D$ is smooth real-analytic of finite type (in the sense of D'Angelo) in a neighborhood of $\bar{M}$. Let f : $D{\rightarrow}\mathbb{C}^n$ be a holomorphic correspondence such that the cluster set $cl_f$(M) is contained in a smooth closed real-algebraic hypersurface M' in $\mathbb{C}^n$ of finite type. It is shown that if f extends continuously to some open peace of M, then f extends as a holomorphic correspondence across M. As an application, we prove that any proper holomorphic correspondence from a bounded domain D in $\mathbb{C}^n$ with smooth real-analytic boundary onto a bounded domain D' in $\mathbb{C}^n$ with smooth real-algebraic boundary extends as a holomorphic correspondence to a neighborhood of $\bar{D}$.

Direct strength evaluation of the structural strength of a 500 cbm LNG bunkering ship

  • Muttaqie, Teguh;Jung, DongHo;Cho, Sang-Rai;Sohn, Jung Min
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.781-790
    • /
    • 2022
  • The present paper describes a general procedure of the structural safety assessment for the independent type C tank of LNG bunkering ship. This strength assessment procedure consists of two main scheme, global Finite Element Analysis (FEA) model primarily for hull structure assessment and detailed LNG Tank structures FEA model including the cylindrical tank itself and saddle-support structures. Two kinds of mechanism are used, fixed and slides constraints in fore and rear of the saddle-support structures that result in a variation of the reaction forces. Finite Element (FE) analyses have been performed and verified by the strength acceptance criteria to evaluate the safety adequacy of yielding and buckling of the hull and supporting structures. The detail of FE model for an LNG type C tank and its saddle supports was made, which includes the structural members such as cylindrical tank shell, ring stiffeners, swash bulkhead, and saddle supports. Subsequently, the FE buckling analysis of the Type C tank has been performed under external pressure following International Gas Containment (IGC) code requirements. Meanwhile, the assessment is also performed for yielding and buckling strength evaluation of the cylindrical LNG tank according to the PD 5500 unfired fusion welded pressure vessels code. Finally, a complete procedure for assessing the structural strength of 500 CBM LNG cargo tank, saddle support and hull structures have been provided.

A Study on the Design Automation of R/C Beam by the Finite Element Method and Truss Model Approach (유한요소법과 트러스모델에 의한 철근콘크리트 보 부재의 설계자동화에 관한 연구)

  • 엄대호;이정재;윤성수;김한중
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.119-123
    • /
    • 1998
  • New design automation method of R/C beam based on the finite element method and the nonlinear truss model approach has been presented. The proposed method can substitute inaccurate existing method, which has limitation in its application, provide accurate and efficient design results for any type of R/C beam.

  • PDF

A Study on the Forming Process of Stair Type Side Sill for Automobile using DP780 (DP780이 적용된 자동차용 계단형 사이드실의 성형공정 연구)

  • Suh, C.H.;Shin, H.D.;Jung, Y.C.;Park, C.D.;Lim, Y.H.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.301-306
    • /
    • 2009
  • High strength steels are widely used for lightweight automobile parts and the control of springback is very important in sheet metal forming. The object of this study is to develop the forming process for stair type side sill made of high strength steel, DP780. Stair type side sill with local formed area and geometry change area can improve stiffness and design freedom but there are a few studies for forming process. The forming technology considered in this paper is form type process, which have many advantages for farming of high strength steel compared with draw type process. Finite element analysis is carried out to predict formability and springback. It is shown that angle calibration of die is essential for reducing springback, and local forming involving bead is effective to control springback also. The effectiveness of local forming and angle calibration is verified by experimental.

  • PDF

A Study on the Forming Process of Stair Type Side Sill for Automobile using DP780 (DP780이 적용된 자동차용 계단형 사이드실의 성형공정 연구)

  • Suh, C.H.;Shin, H.D.;Jung, Y.C.;Park, C.D.;Lim, Y.H.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.8
    • /
    • pp.601-606
    • /
    • 2009
  • High strength steels are widely used for lightweight automobile parts and the control of springback is very important in sheet metal forming. The object of this study is to develop the forming process for stair type side sill made of high strength steel, DP780. Stair type side sill with local formed area and geometry change area can improve stiffness and design freedom but there are few studies for forming process. The forming technology considered in this paper is form type process, which has many advantages for forming of high strength steel compared with draw type process. Finite element analysis is carried out to predict formability and springback. It is shown that angle calibration of die is essential for reducing springback, and local forming involving bead is effective to control springback also. The effectiveness of local forming and angle calibration is verified by experimental.

Behavior and resistance of truss-type shear connector for composite steel-concrete beams

  • Lima, Jerfson M.;Bezerra, Luciano M.;Bonilla, Jorge;Silva, Ramon S.Y.R.C.;Barbosa, Wallison C.S.
    • Steel and Composite Structures
    • /
    • v.36 no.5
    • /
    • pp.569-586
    • /
    • 2020
  • The behavior of composite steel-concrete beams depends on the transmission of forces between two parts: the concrete slab and the steel I-beam. The shear connector is responsible for the interaction between these two parts. Recently, an alternative shear connector, called Truss Type connector, has been developed; it aligns efficient structural behavior, fast construction and implementation, and low cost when compared to conventional connectors applied in composite structures. However, there is still a lack of full understanding of the mechanical behavior of the Truss Type connector, due to its novelty. Thus, this study aims to analyze the influence of variation of geometric and physical parameters on the shear resistance of the Truss Type connector. In order to investigate those parameters, a non-linear finite element model, able to simulate push-out tests of Truss Type connectors, was specifically developed and validated with experimental results. A thorough parametric study, varying the height, the angle between rods, the diameter, and the concrete strength, was conducted to evaluate the shear resistance of the Truss Type connector. In addition, an equation to predict the resistance of the original Truss Type shear connector was proposed.