• Title/Summary/Keyword: C-Space

Search Result 4,747, Processing Time 0.034 seconds

On the Fibonacci Almost Convergent Sequence Space and Fibonacci Core

  • DEMIRIZ, SERKAN;KARA, EMRAH EVREN;BASARIR, METIN
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.355-372
    • /
    • 2015
  • In the present paper, by using the Fibonacci difference matrix, we introduce the almost convergent sequence space $\hat{c}^f$. Also, we show that the spaces $\hat{c}^f$and $\hat{c}$ are linearly isomorphic. Further, we determine the ${\beta}$-dual of the space $\hat{c}^f$ and characterize some matrix classses on this space. Finally, Fibonacci core of a complex-valued sequence has been introduced, and we prove some inclusion theorems related to this new type of core.

EQUIVALENT NORMS IN A BANACH FUNCTION SPACE AND THE SUBSEQUENCE PROPERTY

  • Calabuig, Jose M.;Fernandez-Unzueta, Maite;Galaz-Fontes, Fernando;Sanchez-Perez, Enrique A.
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1387-1401
    • /
    • 2019
  • Consider a finite measure space (${\Omega}$, ${\Sigma}$, ${\mu}$) and a Banach space $X({\mu})$ consisting of (equivalence classes of) real measurable functions defined on ${\Omega}$ such that $f{\chi}_A{\in}X({\mu})$ and ${\parallel}f{\chi}_A{\parallel}{\leq}{\parallel}f{\parallel}$, ${\forall}f{\in}({\mu})$, $A{\in}{\Sigma}$. We prove that if it satisfies the subsequence property, then it is an ideal of measurable functions and has an equivalent norm under which it is a Banach function space. As an application we characterize norms that are equivalent to a Banach function space norm.

A STUDY ON κ-AP, κ-WAP SPACES AND THEIR RELATED SPACES

  • Cho, Myung Hyun;Kim, Junhui
    • Honam Mathematical Journal
    • /
    • v.39 no.4
    • /
    • pp.655-663
    • /
    • 2017
  • In this paper we define $AP_c$ and $AP_{cc}$ spaces which are stronger than the property of approximation by points(AP). We investigate operations on their subspaces and study function theorems on $AP_c$ and $AP_{cc}$ spaces. Using those results, we prove that every continuous image of a countably compact Hausdorff space with AP is AP. Finally, we prove a theorem that every compact ${\kappa}$-WAP space is ${\kappa}$-pseudoradial, and prove a theorem that the product of a compact ${\kappa}$-radial space and a compact ${\kappa}$-WAP space is a ${\kappa}$-WAP space.

Subtype classification of Human Breast Cancer via Kernel methods and Pattern Analysis of Clinical Outcome over the feature space (Kernel Methods를 이용한 Human Breast Cancer의 subtype의 분류 및 Feature space에서 Clinical Outcome의 pattern 분석)

  • Kim, Hey-Jin;Park, Seungjin;Bang, Sung-Uang
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.175-177
    • /
    • 2003
  • This paper addresses a problem of classifying human breast cancer into its subtypes. A main ingredient in our approach is kernel machines such as support vector machine (SVM). kernel principal component analysis (KPCA). and kernel partial least squares (KPLS). In the task of breast cancer classification, we employ both SVM and KPLS and compare their results. In addition to this classification. we also analyze the patterns of clinical outcomes in the feature space. In order to visualize the clinical outcomes in low-dimensional space, both KPCA and KPLS are used. It turns out that these methods are useful to identify correlations between clinical outcomes and the nonlinearly protected expression profiles in low-dimensional feature space.

  • PDF

Polynomial Fuzzy Radial Basis Function Neural Network Classifiers Realized with the Aid of Boundary Area Decision

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2098-2106
    • /
    • 2014
  • In the area of clustering, there are numerous approaches to construct clusters in the input space. For regression problem, when forming clusters being a part of the overall model, the relationships between the input space and the output space are essential and have to be taken into consideration. Conditional Fuzzy C-Means (c-FCM) clustering offers an opportunity to analyze the structure in the input space with the mechanism of supervision implied by the distribution of data present in the output space. However, like other clustering methods, c-FCM focuses on the distribution of the data. In this paper, we introduce a new method, which by making use of the ambiguity index focuses on the boundaries of the clusters whose determination is essential to the quality of the ensuing classification procedures. The introduced design is illustrated with the aid of numeric examples that provide a detailed insight into the performance of the fuzzy classifiers and quantify several essentials design aspects.

LIPSCHITZ TYPE CHARACTERIZATION OF FOCK TYPE SPACES

  • Hong Rae, Cho;Jeong Min, Ha
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1371-1385
    • /
    • 2022
  • For setting a general weight function on n dimensional complex space ℂn, we expand the classical Fock space. We define Fock type space $F^{p,q}_{{\phi},t}({\mathbb{C}}^n)$ of entire functions with a mixed norm, where 0 < p, q < ∞ and t ∈ ℝ and prove that the mixed norm of an entire function is equivalent to the mixed norm of its radial derivative on $F^{p,q}_{{\phi},t}({\mathbb{C}}^n)$. As a result of this application, the space $F^{p,q}_{{\phi},t}({\mathbb{C}}^n)$ is especially characterized by a Lipschitz type condition.

ON A PROPERTY OF CONVOLUTION OPERATORS IN THE SPACES $D'_{L^{P'}} p{\geq}1 AND \delta'$

  • Park, D.H.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.91-95
    • /
    • 1984
  • Let D$^{p}$ be the space of distributions of $L^{p}$-growth and S the space of tempered destributions in $R^{n}$: D$^{p}$, 1.leq.P.leq..inf., is the dual of the space $D^{p}$ which we discribe later. We denote by O$_{c}$(S:S') the space of convolution operators in S. In [8] S. Sznajder and Z. Zielezny proved the following necessary conditions for convolution operators in O$_{c}$(S:S) to be solvable in S.

  • PDF

SPACE-LIKE COMPLEX HYPERSURFACES OF A COMPLEX LORENTZ MANIFOLD

  • Kwon, Jung-Hwan;Nakagawa, Hisao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.75-82
    • /
    • 1989
  • It is recently proved by Aiyama and the authors [2] that a complete space-like complex submanifold of a complex space form $M^{n+p}$$_{p}$ (c') (c'.geq.0) is to totally geodesic. This is a complex version of the Bernstein-type theorem in the Minkowski space due to Calabi [4] and Cheng and Yau [5], which is generalized by Nishikawa[7] in the Lorentz manifold satisfying the strong energy condition. The purpose of this paper is to consider his result in the complex Lorentz manifold and is to prove the following.e following.

  • PDF

A BANACH ALGEBRA OF SERIES OF FUNCTIONS OVER PATHS

  • Cho, Dong Hyun;Kwon, Mo A
    • Korean Journal of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.445-463
    • /
    • 2019
  • Let C[0, T] denote the space of continuous real-valued functions on [0, T]. On the space C[0, T], we introduce a Banach algebra of series of functions which are generalized Fourier-Stieltjes transforms of measures of finite variation on the product of simplex and Euclidean space. We evaluate analytic Feynman integrals of the functions in the Banach algebra which play significant roles in the Feynman integration theory and quantum mechanics.