ON A PROPERTY OF CONVOLUTION OPERATORS IN THE SPACES $D'_{L^{P'}} p{\geq}1 AND \delta'$

  • Published : 1984.08.01

Abstract

Let D$^{p}$ be the space of distributions of $L^{p}$-growth and S the space of tempered destributions in $R^{n}$: D$^{p}$, 1.leq.P.leq..inf., is the dual of the space $D^{p}$ which we discribe later. We denote by O$_{c}$(S:S') the space of convolution operators in S. In [8] S. Sznajder and Z. Zielezny proved the following necessary conditions for convolution operators in O$_{c}$(S:S) to be solvable in S.

Keywords