• Title/Summary/Keyword: C-P-N-D Ecological System

Search Result 3, Processing Time 0.016 seconds

C-P-N-D Ecological System and ICCT (Information, Communication, Contents Technology) (C-P-N-D 생태계와 ICCT (Information, Communication, Contents Technology))

  • Choi, ChangHyeon
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.7-16
    • /
    • 2014
  • This study aims to analyze the key logic of the current C-P-N-D ICT ecological system, to find out the shortcomings of the current system, and then to offer policy suggestions for the establishment of a new creative contents industry ecological system; that is, ICCT (Information, Communication, Contents and Technology) System.

Characteristics of Phytoplankton Succession Based on the Functional Group in the Enclosed Culture System (대형 배양장치에서 기능그룹에 기초한 식물플랑크톤 천이 특성)

  • Lee, Kyung-Lak;Noh, Seongyu;Lee, Jaeyoon;Yoon, Sungae;Lee, Jaehak;Shin, Yuna;Lee, Su-Woong;Rhew, Doughee;Lee, Jaekwan
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.441-451
    • /
    • 2017
  • The present study was conducted from August to December 2016 in a cylindrical water tank with a diameter of 1 m, a height of 4 m and a capacity of 3,000 L. The field water and sediment from the Nakdong River were also sampled for the experimental culture (field water+sediment) and control culture (field water), respectively. In this study, we aimed to investigate phytoplankton succession pattern using the phytoplankton functional group in the enclosed culture system. A total of 50 species in 27 genera including Chlorophyceae (30 species), Bacillariophyceae (11 species), Cyanophyceae (7 species), and Cryptophyceae (2 species) were identified in the experimental and control culture systems. A total of 19 phytoplankton functional groups (PFGs) were identified, and these groups include B, C, D, F, G, H1, J, K, Lo, M, MP, N, P, S1, $T_B$, $W_0$, X1, X2 and Y. In particular, $W_0$, J and M groups exhibited the marked succession in the experimental culture system with higher biovolumes compared to those of the control culture system, which may be related to the internal cycling of nutrients by sediment in the experimental culture system. The principal component analyses demonstrated that succession patterns in PFG were associated with the main environmental factors such as nutrients(N, P), water temperature and light intensity in two culture systems. In conclusion, the present study showed the potential applicability of the functional group for understanding the adaptation strategies and ecological traits of the phytoplankton succession in the water bodies of Korea.

Coarse Woody Debris (CWD) Respiration Rates of Larix kaempferi and Pinus rigida: Effects of Decay Class and Physicochemical Properties of CWD (일본잎갈나무와 리기다소나무 고사목의 호흡속도: 고사목의 부후등급과 이화학적 특성의 영향)

  • Lee, Minkyu;Kwon, Boram;Kim, Sung-geun;Yoon, Tae Kyung;Son, Yowhan;Yi, Myong Jong
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.1
    • /
    • pp.40-49
    • /
    • 2019
  • Coarse woody debris (CWD), which is a component of the forest ecosystem, plays a major role in forest energy flow and nutrient cycling. In particular, CWD isolates carbon for a long time and is important in terms of slowing the rate of carbon released from the forest to the atmosphere. Therefore, this study measured the physiochemical characteristics and respiration rate ($R_{CWD}$) of CWD for Larix kaempferi and Pinus rigida in temperate forests in central Korea. In summer 2018, CWD samples from decay class (DC) I to IV were collected in the 14 forest stands. $R_{CWD}$ and physiochemical characteristics were measured using a closed chamber with a portable carbon dioxide sensor in the laboratory. In both species, as CWD decomposition progressed, the density ($D_{CWD}$) of the CWD decreased while the water content ($WC_{CWD}$) increased. Furthermore, the carbon concentrations did not significantly differ by DC, whereas the nitrogen concentration significantly increased and the C/N ratio decreased. The respiration rate of L. kaempferi CWD increased significantly up to DC IV, but for P. rigida it increased to DC II and then unchanged for DC II-IV. Accordingly, except for carbon concentration, all the measured characteristics showed a significant correlation with $R_{CWD}$. Multiple linear regression showed that $WC_{CWD}$ was the most influential factor on $R_{CWD}$. $WC_{CWD}$ affects $R_{CWD}$ by increasing microbial activity and is closely related to complex environmental factors such as temperature and light conditions. Therefore, it is necessary to study their correlation and estimate the time-series pattern of CWD moisture.