• Title/Summary/Keyword: C-O bond

Search Result 555, Processing Time 0.031 seconds

Water Repellent Finishes of Polyester Fiber Using Glow Discharge (글로우방전을 이용한 폴리에스테르섬유의 발수가공)

  • Mo, Sang Young;Kim, Gi Lyong;Kim, Tae Nyun;Chun, Tae Il
    • Textile Coloration and Finishing
    • /
    • v.5 no.4
    • /
    • pp.29-41
    • /
    • 1993
  • In order to surface Hydrophobilization of Poly(ethylene terephthalate) (PET) fiber samples were treated in the atmosphere of CF$_{4}$ or $C_{2}$F$_{6}$glow discharge. The sample used in this study was PET film which is 75$\mu$m thick made by Teijin, O-Type(Japan). The cleaned samples were placed in plasma reactor made of pyrex glass cylinder, and plasma processing was carried out by glow discharge of CF$_{4}$ or $C_{2}$F$_{6}$ gas, being continuously fed by gas flow and continuously pumped out by a vacuum system. Electric power source for generate plasma state was sustained alternating current(60Hz) and voltage was sustained 600 volt. The duration of plasma treatment varied from 15 to 120 seconds except special case, the monomer gase pressure varied from 0.02 to 0.3 Torr and power range was 10 to 90 watts. The hydrophobic features of changed PET surface were evaluated by contact angle measurement and surface chemical characteristics were analyzed by ESCA. Results can be summerized as follows. 1. The most favorable setting position of substrate was the center area between the two electrodes. 2. $C_{2}$F$_{6}$ discharge current was lower than that of CF$_{4}$ when same voltage was sustained. Treated efficiency between CF$_{4}$ and $C_{2}$F$_{6}$ did not revealed significant differences under same electric power(wattage). 3. When monomer pressure is very low below 0.02 torr, as though substrate is exposed to CF$_{4}$ or $C_{2}$F$_{6}$ plasma, it tend to be hydrophilic through a little of fluorine bond and a great deal of oxidizing reaction. 4. There brought good hydrophobilization when monomer pressure was more 0.1 torr and duration of glow discharge treatment was over 45 seconds. When monomer pressure was too high, discharge current became low. Although prolong the duration, there was no more high hydrophobilization. 5. According to ESCA analysis, there were a little CF bond and a prevailing CF$_{2}$ bond in CF$_{4}$-treated substrate. There were CF$_{3}$, a little CF and a prevailing CF$_{2}$ bond in $C_{2}$F$_{6}$-treated substrate.d substrate.

  • PDF

THE INTERMEDIATE GLASS STUDY IN HYDROXYAPATITE AND ALUMINA BONDING (HAp와 알루미나 결합에 있어서의 중간 유리상 연구)

  • Kim, T.N.;Kim, J.O.;Cho, S.J.
    • The Journal of Natural Sciences
    • /
    • v.8 no.1
    • /
    • pp.47-51
    • /
    • 1995
  • Several intermediate glasses are investigated to bond the alumina and the hydroxyapatite (HAp). The chemical compositions of the intermediate glasses are chosen as $CaO-Al_2O_3$. The mole ratio of CaO/$Al_2O_3$ is changed from 0.5 to 3.0. The lowest melting is observed at $1355^{\circ}C$ in the specimen of CaO/$Al_2O_3$ at the mole ratio of 2. With increasing contents of $Al_2O_3$, the melting temperatures gradually increase and a number of pores are observed. The sectional microstructure shows that the good wetability is observed in higher contents of CaO specimens. This implies that the good wetability is obtained in the mole ratio range of CaO/$Al_2O_3geq2$. The phase transformations are observed after treatment but the major peaks of HAp still exist.

  • PDF

Crystal Structure of Ca1.29Bi0.14VO4

  • Kim, Myung-Seab;Lah, Myoung-Soo;Kim, Ho-Kun
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.98-102
    • /
    • 2002
  • The structure of a single crystal, grown by a slow cooling a melt of $Ca_{1.29}Bi_{0.14}VO_4$ composition, was analyzed. The crystals belong to the rhombohedral space group R3c and the dimensions of the unit cells are a = 10.848(1)${\AA}$, c = 38.048(6)${\AA}$, V = 3877.6(8)${\AA}^3$ for the pale yellow crystal, and a = 10.857(1), c = 38.063(6)${\AA}$, V = 3885.6(8)${\AA}^3$ for the yellow crystal, respectively. Unit cell dimensions of the crystal were larger than those of the host crystal, $Ca_3(VO_4)_2$, owing to the Bi that replaced Ca in the unit cell. Ca in the unit cell formed six, eight and nine coordinated polyhedra with O atoms and Bi replacing Ca entered the eight or nine coordinated Ca sites with different crystallographic environments in the unit cell. All the V in the unit cell formed four coordinated tetrahedra with O atoms, however V-O bond lengths in the tetrahedra were different from one another.

Synthesis and Structural Analysis of 2-Amino-4-(4-hydroxy-3-methoxyphenyl)-7,9-dimethyl-5-oxo-4, 5, 6, 7-tetrahydropyrano [2, 3-d] pyrazolo [3, 4-b] pyridine-3-carbonitrile through X-ray Crystallography

  • Ganapathy, Jagadeesan;Jayarajan, R.;Vasuki, G.;Sanmargam, Aravindhan
    • Journal of Integrative Natural Science
    • /
    • v.8 no.1
    • /
    • pp.30-39
    • /
    • 2015
  • The crystal structure of the potential active 2-amino-4-(4-hydroxy-3-methoxyphenyl)-7, 9-dimethyl-5-oxo-4, 5, 6, 7-tetrahydropyrano [2, 3-d] pyrazolo [3, 4-b] pyridine-3-carbonitrile ($C_{21}H_{22}N_5O_6S$) has been determined from single crystal X-ray diffraction data. In the title compound crystallizes in the monoclinic space group P-1 with unit cell dimension a=8.1201(9)${\AA}$, b=12.2684(4)${\AA}$ and c=12.387(2)${\AA}$ [${\alpha}=69.573^{\circ}$, ${\beta}=12.168^{\circ}$ and ${\gamma}=76.060^{\circ}$]. In the structure the pyrazole, pyridine and pyran are almost coplanar each other. The crystal packing is stabilized by intermolecular C-H...O and N-H... O hydrogen bond interaction.

Bonding and Antibonding Regions (II). Origin of Barriers to Internal Rotation of $H_2O_2$ and $C_2H_6$ (결합공간과 반결합공간 (제2보). $H_2O_2$$C_2H_6$의 Internal Rotation Barrier의 원천적 요인)

  • Kim Hojing;Lee Duckhwan
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.20-29
    • /
    • 1979
  • The origin of barriers to internal rotation of hydrogen peroxide and ethane is investigated by using the concept of Bonding and Antibonding Regions. The strong bond formations between the axial and end atoms on the same side make the real charge densities in these molecules less dependent on conformations than those in the hypothetical molecules having no axial atoms. Thus, the existence of the axial atoms should induce the migration of the transition density from the Bonding region to the Antibonding region. Barrier to internal rotation can be understood in terms of this migration of the transition density to such an extent that the change in nuclear-nuclear repulsion energy becomes the dominating part of the total perturbation energy.

  • PDF

Sintering behavior and characterization of Ln0.7Ca0.3MnO3 (Ln=Nd, Sm, La) (Ln0.7Ca0.3MnO3 (Ln=Nd, Sm, La)의 소결 거동 및 특성)

  • Chon, Gom-Bai;Koo, Bon-Heun;Lee, Chan-Gyu
    • Korean Journal of Materials Research
    • /
    • v.16 no.1
    • /
    • pp.44-49
    • /
    • 2006
  • Effects of doping rare earth element on Ln site of $Ln_{0.7}Ca_{0.3}MnO_3$ (Ln=Nd, Sm and La) were examined from sintering behavior, structure and magnetic properties. Sintering reactions proceeded rapidly in order of $La_{0.7}Ca_{0.3}MnO_3>Nd_{0.7}Ca_{0.3}MnO_3>Sm_{0.7}Ca_{0.3}MnO_3$. This result can be explained by diffusivity of metal cation. Size of a-axis increased as following order of La$Nd_{0.7}Ca_{0.3}MnO_3$, 93K for $Sm_{0.7}Ca_{0.3}MnO_3$ and 225K for $La_{0.7}Ca_{0.3}MnO_3$ were obtained. This result coincides with change of Mn-O bond length causing by a-axis lattice constant.

Anilinolysis of Diphenyl Thiophosphinic Chloride and Theoretical Studies on Various R1R2P(O or S)Cl

  • Dey, Nilay Kumar;Han, In-Suk;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.2003-2008
    • /
    • 2007
  • The aminolysis of diphenyl thiophosphinic chloride (2) with substituted anilines in acetonitrile at 55.0 oC is investigated kinetically. Kinetic results yield large Hammett ρX (ρnuc = ?3.97) and Bronsted βX (βnuc = 1.40) values. A concerted mechanism involving a partial frontside nucleophilic attack through a hydrogen-bonded, four-center type transition state is proposed on the basis of the primary normal kinetic isotope effects (kH/kD = 1.0-1.1) with deuterated aniline (XC6H4ND2) nucleophiles. The natural bond order charges on P and the degrees of distortion of 42 compounds: chlorophosphates [(R1O)(R2O)P(=O)Cl], chlorothiophosphates [(R1O)(R2O)P(=S)Cl], phosphonochloridates [(R1O)R2P(=O)Cl], phosphonochlorothioates [(R1O)R2P(=S)Cl], chlorophosphinates [R1R2P(=O)Cl], and chlorothiophosphinates [R1R2P(=S)Cl] are calculated at the B3LYP/ 6-311+G(d,p) level in the gas phase.

Crystal Structure Analysis of Methyl-3-phenyl-3H-chromeno[4,3-c]isoxazole-3a(4H)-carboxylate

  • Ganapathy, Jagadeesan;Srinivasan, J.;Manickam, Bakthadoss
    • Journal of Integrative Natural Science
    • /
    • v.8 no.3
    • /
    • pp.184-191
    • /
    • 2015
  • The crystal structure of the potential active methyl-3-phenyl-3H-chromeno[4,3-c]isoxazole-3a(4H)-carboxylate ($C_{18}H_{15}NO_4$) has been determined from single crystal X-ray diffraction data. In the title compound crystallizes in the orthorombic space group $P2_12_12_1$ with unit cell dimension $a=9.8320(17){\AA}$, $b=9.9890(18){\AA}$ and $c=15.588(3){\AA}$ [${\alpha}=90^{\circ}$, ${\beta}=90^{\circ}$ and ${\gamma}=90^{\circ}$]. In the structure chromene, isoxazole and carboxylate are almost coplanar each other. All geometrical parameters revelled that chromene ring of pyran ring adopt sofa conformation. The crystal packing is stabilized by intermolecular C-H...O and C-H...N hydrogen bond interaction.

Two Anhydrous Zeolite X Crystal Structures, $Pd_{18}Ti_{56}Si_{100}Al_{92}O_{384} and Pd_{21}Tl_{50}Si_{100}Al_{92}O_{384}$

  • Yun, Bo Yeong;Song, Mi Gyeong;Lee, Seok Hui;Kim, Yang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.30-36
    • /
    • 2001
  • The crystal structures of fully dehydrated $Pd^{2+}$ - and $TI^{+}$ -exchanged zeolite X, $Pd_{18}TI_{56}Si_{100}Al_{92}O_{384}(Pd_{18}TI_{50-}X$, a = $24.935(4)\AA$ and $Pd_{21}TI_{50}Si_{100}Al_{92}O_{384}(Pd_{21}TI_{50-}X$ a = $24.914(4)\AA)$, have been determined by single-crystal X-ray diffraction methods in the cubic space group Fd3 at $21(1)^{\circ}C.$ The crystals were prepared using an exchange solution that had a $Pd(NH_3)_4Cl_2\;:TINO_3$ mole ratio of 50 : 1 and 200 : 1, respectively, with a total concentration of 0.05M for 4 days. After dehydration at $360^{\circ}C$ and 2 ${\times}$$10^{-6}$ Torr in flowing oxygen for 2 days, the crystals were evacuated at $21(1)^{\circ}C$ for 2 hours. They were refined to the final error indices $R_1$ = 0.045 and $R_2$ = 0.038 with 344 reflections for $Pd_{18}Tl_{56-}X$, and $R_1$ = 0.043 and $R_2$ = 0.045 with 280 reflections for $Pd_{21}Tl_{50-}X$; I > $3\sigma(I).$ In the structure of dehydrated $Pd_{18}Tl_{56-}X$, eighteen $Pd^{2+}$ ions and fourteen $TI^{+}$ ions are located at site I'. About twenty-seven $TI^{+}$ ions occupy site II recessed $1.74\AA$ into a supercage from the plane of three oxygens. The remaining fifteen $TI^{+}$ ions are distributed over two non-equivalent III' sites, with occupancies of 11 and 4, respectively. In the structure of $Pd_{21}Tl_{50-}X$, twenty $Pd^{2+}$ and ten $TI^{+}$ ions occupy site I', and one $Pd^{2+}$ ion is at site I. About twenty-three $TI^{+}$ ions occupy site II, and the remaining seventeen $TI^{+}$ ions are distributed over two different III' sites. $Pd^{2+}$ ions show a limit of exchange (ca. 39% and 46%), though their concentration of exchange was much higher than that of $TI^{+}$ ions. $Pd^{2+}$ ions tend to occupy site I', where they fit the double six-ring plane as nearly ideal trigonal planar. $TI^{+}$ ions fill the remaining I' sites, then occupy site II and two different III' sites. The two crystal structures show that approximately two and one-half I' sites per sodalite cage may be occupied by $Pd^{2+}$ ions. The remaining I' sites are occupied by $TI^{+}$ ions with Tl-O bond distance that is shorter than the sum of their ionic radii. The electrostatic repulsion between two large $TI^{+}$ ions and between $TI^{+}$ and $Pd^{2+}$ ions in the same $\beta-cage$ pushes each other to the charged six-ring planes. It causes the Tl-O bond to have some covalent character. However, $TI^{+}$ ions at site II form ionic bonds with three oxygens because the super-cage has the available space to obtain the reliable ionic bonds.

Effect of Sputtering Parameter on the Deposition Behavior of TiO2 Thin Film (TiO2 박막의 증착거동에 미치는 스퍼터링 공정변수의 영향)

  • Kim, Eul-Soo;Lee, Gun-Hwan;Kwon, Sik-Chol;Ahn, Hyo-Jun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.1
    • /
    • pp.8-16
    • /
    • 2003
  • $TiO_2$ thin films were deposited by DC reactive magnetron sputtering with variations in sputtering parameter such as Ar and $O_2$ flow rate, DC power, substrate temperature and magnetic field. Deposition rate, crystal structure, chemical bond of $TiO_2$ films on the deposition conditions were investigated by Alpha-step, X-ray Diffractometer(XRD), X-ray Photoelectron Spectroscopy(XPS). When the DC power was applied at 500watt, deposition rate of $TiO_2$ film was about 480A/min. $TiO_2$ films coated under the deposition condition of 15sccm Ar and 7~10sccm $O_2$ flow rate was only observed anatase phase. With increasing substrate temperature from RT to $300^{\circ}C$, crystal orientation of $TiO_2$ films variously became.