Bonding and Antibonding Regions (II). Origin of Barriers to Internal Rotation of $H_2O_2$ and $C_2H_6$

결합공간과 반결합공간 (제2보). $H_2O_2$$C_2H_6$의 Internal Rotation Barrier의 원천적 요인

  • Kim Hojing (Department of Chemistry, Seoul National University) ;
  • Lee Duckhwan (Department of Chemistry, Seoul National University)
  • 김호징 (서울대학교 자연과학대학 화학과) ;
  • 이덕환 (서울대학교 자연과학대학 화학과)
  • Published : 1979.02.28

Abstract

The origin of barriers to internal rotation of hydrogen peroxide and ethane is investigated by using the concept of Bonding and Antibonding Regions. The strong bond formations between the axial and end atoms on the same side make the real charge densities in these molecules less dependent on conformations than those in the hypothetical molecules having no axial atoms. Thus, the existence of the axial atoms should induce the migration of the transition density from the Bonding region to the Antibonding region. Barrier to internal rotation can be understood in terms of this migration of the transition density to such an extent that the change in nuclear-nuclear repulsion energy becomes the dominating part of the total perturbation energy.

과산화수소와 에탄의 integral rotation barrier의 원천적 요인을 결합 공간과 반결합 공간의 개념을 이용하여 연구하였다. internal rotation barrier는, 중심 원자의 존재로 인하여 천이밀도가 중심 원자가 없을 때보다 더 많이 반결합 공간으로 쏠림에 기인 함을 밝혔다. 이러한 천이밀도의 쏠림은 강한 O-H (또는 C-H) 결합에 의하여 내부 회전에 따른 전자밀도의 변화가 적어지는 것으로 설명할 수 있음을 보였다.

Keywords

References

  1. J. Chem. Phys. v.4 J. D. Kemp;K. S. Pitzer
  2. J. Chem. Phys. v.39 R. M. Pitzer;W. N. Lipscomb
  3. J. Chem. Phys. v.44 U. Kaldor;I. Shavitt
  4. J. Chem. Phys. v.46 L. Pedersen;K. Mokomura
  5. J. Chem. Phys. v.51 M. E. Schwartz
  6. J. Chem. Phys. v.55 R. B. Davidson;L. C. Allen
  7. J. Chem. Phys. v.46 W. E. Palke;R. M. Pitzer
  8. J. Chem. Phys. v.46 W. H. Fink;L. C. Allen
  9. J. Chem. Phys. v.46 W. H. Fink;L. C. Allen
  10. J. Chem. Phys. v.64 T. Nee;R. G. Parr;R. J. Bartlett
  11. J. Chem. Phys. v.33 W. L. Clinton
  12. J. Chem. Phys. v.38 M. Karplus;R. G. Parr
  13. J. Chem. Phys. v.41 K. Ruedenberg
  14. J. Chem. Phys. v.41 R. E. Wyatt;R. G. Parr
  15. J. Chem. Phys. v.43 R. E. Wyatt;R. G. Parr
  16. J. Chem. Phys. v.44 R. E. Wyatt;R. G. Parr
  17. J. Chem. Phys. v.41 H. Kim;R. G. Parr
  18. Chem. Phys. Letters v.2 L. C. Allen
  19. J. Amer. Chem. Sec. v.93 W. L. Jorgensen;L. C. Allen
  20. J. Chem. Phys. v.49 O. J. Sovers;C. W. Kern;R. M. Pitzer;M. Karplus
  21. J. Chem. Phys. v.60 C. W. Kern;R. M. Pitzer;O. J. Sovers
  22. J. Amer. Chem. Soc. v.94 R. M. Stevens;M. Karplus
  23. J. Chem. Phys. v.60 G. F. Musso;V. Magnasco
  24. J. Chem. Phys. v.61 E. Lombardi;G. Tarantini;L. Pirola;L. Jansen;T. Ritter
  25. J. Chem. Phys. v.63 M. Levy;T. Nee;R. G. Parr
  26. J. Chem. Phys. v.67 P. A. Christiansen;W. E. Palke
  27. J. Korean Chem. Soc. v.23 H. Kim;D. Lee
  28. Phys. Rev. v.97 P. O. Lowdin
  29. Rev. Mod. Phys. v.32 A. D. McLean;A. Weiss;M. Yoshimine
  30. J. Chem. Phys. v.45 R. H. Hunt;R. A. Leacock
  31. J. Amer. Chem. Soc. v.77 E. A. Mason;M. M. Kreevoy
  32. J. Chem. Phys. v.36 R. L. Redington;W. B. Olson;P. C. Cross
  33. J. Chem. Phys. v.47 W. H. Fink;L. C. Allen