• Title/Summary/Keyword: C-Means clustering

Search Result 362, Processing Time 0.021 seconds

Analysis of Combined Yeast Cell Cycle Data by Using the Integrated Analysis Program for DNA chip (DNA chip 통합분석 프로그램을 이용한 효모의 세포주기 유전자 발현 통합 데이터의 분석)

  • 양영렬;허철구
    • KSBB Journal
    • /
    • v.16 no.6
    • /
    • pp.538-546
    • /
    • 2001
  • An integrated data analysis program for DNA chip containing normalization, FDM analysis, various kinds of clustering methods, PCA, and SVD was applied to analyze combined yeast cell cycle data. This paper includes both comparisons of some clustering algorithms such as K-means, SOM and furry c-means and their results. For further analysis, clustering results from the integrated analysis program was used for function assignments to each cluster and for motif analysis. These results show an integrated analysis view on DNA chip data.

  • PDF

Facial Expression Recognition with Fuzzy C-Means Clusstering Algorithm and Neural Network Based on Gabor Wavelets

  • Youngsuk Shin;Chansup Chung;Lee, Yillbyung
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.126-132
    • /
    • 2000
  • This paper presents a facial expression recognition based on Gabor wavelets that uses a fuzzy C-means(FCM) clustering algorithm and neural network. Features of facial expressions are extracted to two steps. In the first step, Gabor wavelet representation can provide edges extraction of major face components using the average value of the image's 2-D Gabor wavelet coefficient histogram. In the next step, we extract sparse features of facial expressions from the extracted edge information using FCM clustering algorithm. The result of facial expression recognition is compared with dimensional values of internal stated derived from semantic ratings of words related to emotion. The dimensional model can recognize not only six facial expressions related to Ekman's basic emotions, but also expressions of various internal states.

  • PDF

A Simulation Study on The Behavior Analysis of The Degree of Membership in Fuzzy c-means Method

  • Okazaki, Takeo;Aibara, Ukyo;Setiyani, Lina
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.209-215
    • /
    • 2015
  • Fuzzy c-means method is typical soft clustering, and requires a degree of membership that indicates the degree of belonging to each cluster at the time of clustering. Parameter values greater than 1 and less than 2 have been used by convention. According to the proposed data-generation scheme and the simulation results, some behaviors in the degree of "fuzziness" was derived.

Noisy Image Segmentation via Swarm-based Possibilistic C-means

  • Yu, Jeongmin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.35-41
    • /
    • 2018
  • In this paper, we propose a swarm-based possibilistic c-means(PCM) algorithm in order to overcome the problems of PCM, which are sensitiveness of clustering performance due to initial cluster center's values and producing coincident or close clusters. To settle the former problem of PCM, we adopt a swam-based global optimization method which can be provided the optimal initial cluster centers. Furthermore, to settle the latter problem of PCM, we design an adaptive thresholding model based on the optimized cluster centers that yields preliminary clustered and un-clustered dataset. The preliminary clustered dataset plays a role of preventing coincident or close clusters and the un-clustered dataset is lastly clustered by PCM. From the experiment, the proposed method obtains a better performance than other PCM algorithms on a simulated magnetic resonance(MR) brain image dataset which is corrupted by various noises and bias-fields.

Identification of Fuzzy System Driven to Parallel Genetic Algorithm (병렬유전자 알고리즘을 기반으로한 퍼지 시스템의 동정)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.201-203
    • /
    • 2007
  • The paper concerns the successive optimization for structure and parameters of fuzzy inference systems that is based on parallel Genetic Algorithms (PGA) and information data granulation (IG). PGA is multi, population based genetic algorithms, and it is used tu optimize structure and parameters of fuzzy model simultaneously, The granulation is realized with the aid of the C-means clustering. The concept of information granulation was applied to the fuzzy model in order to enhance the abilities of structural optimization. By doing that, we divide the input space to form the premise part of the fuzzy rules and the consequence part of each fuzzy rule is newly' organized based on center points of data group extracted by the C-Means clustering, It concerns the fuzzy model related parameters such as the number of input variables to be used in fuzzy model. a collection of specific subset of input variables, the number of membership functions according to used variables, and the polynomial type of the consequence part of fuzzy rules, The simultaneous optimization mechanism is explored. It can find optimal values related to structure and parameter of fuzzy model via PGA, the C-means clustering and standard least square method at once. A comparative analysis demonstrates that the Dnmosed algorithm is superior to the conventional methods.

  • PDF

A Study on Effective Selection of University Lecture Evaluation (대학 강의평가에서 문항 추출에 관한 연구)

  • Hwang Se-Myung;Kim In-Taek
    • Journal of Engineering Education Research
    • /
    • v.8 no.1
    • /
    • pp.31-45
    • /
    • 2005
  • In this paper, selecting survey items was performed using three clustering methods: factor analysis, fuzzy c-Means algorithm and cluster analysis. The methods were used to extract key items from various questionnaires. The key item represents several similar questionnaires that form a cluster. Test survey was made of 120 items obtained from several surveys and it was answered by 646 students from 4 universities. Each item contains 6 choices. Applying the clustering method chose 25 items which is reduced from the original 120 items. The results yielded by three methods are very similar.

Improved FCM Clustering Image Segmentation (개선된 FCM 클러스터링 영상 분할)

  • Lee, Kwang-Kyug
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.127-131
    • /
    • 2020
  • Fuzzy C-Means(FCM) algorithm is frequently used as a representative image segmentation method using clustering. FCM divides the image space into cluster regions with similar pixel values, which requires a lot of segmentation time. In particular, the processing speed problem for analyzing various patterns of the current users of the web is more important. To solve this speed problem, this paper proposes an improved FCM (Improved FCM : IFCM) algorithm for segmenting the image into the Otsu threshold and FCM. In the proposed method, the threshold that maximizes the variance between classes of Otsu is determined, applied to the FCM, and the image is segmented. Experiments show that IFCM improves performance by shortening image segmentation time compared to conventional FCM.

A Study on Static Situation Awareness System with the Aid of Optimized Polynomial Radial Basis Function Neural Networks (최적화된 pRBF 뉴럴 네트워크에 의한 정적 상황 인지 시스템에 관한 연구)

  • Oh, Sung-Kwun;Na, Hyun-Suk;Kim, Wook-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2352-2360
    • /
    • 2011
  • In this paper, we introduce a comprehensive design methodology of Radial Basis Function Neural Networks (RBFNN) that is based on mechanism of clustering and optimization algorithm. We can divide some clusters based on similarity of input dataset by using clustering algorithm. As a result, the number of clusters is equal to the number of nodes in the hidden layer. Moreover, the centers of each cluster are used into the centers of each receptive field in the hidden layer. In this study, we have applied Fuzzy-C Means(FCM) and K-Means(KM) clustering algorithm, respectively and compared between them. The weight connections of model are expanded into the type of polynomial functions such as linear and quadratic. In this reason, the output of model consists of relation between input and output. In order to get the optimal structure and better performance, Particle Swarm Optimization(PSO) is used. We can obtain optimized parameters such as both the number of clusters and the polynomial order of weights connection through structural optimization as well as the widths of receptive fields through parametric optimization. To evaluate the performance of proposed model, NXT equipment offered by National Instrument(NI) is exploited. The situation awareness system-related intelligent model was built up by the experimental dataset of distance information measured between object and diverse sensor such as sound sensor, light sensor, and ultrasonic sensor of NXT equipment.

Comparative Analysis of Learning Methods of Fuzzy Clustering-based Neural Network Pattern Classifier (퍼지 클러스터링기반 신경회로망 패턴 분류기의 학습 방법 비교 분석)

  • Kim, Eun-Hu;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1541-1550
    • /
    • 2016
  • In this paper, we introduce a novel learning methodology of fuzzy clustering-based neural network pattern classifier. Fuzzy clustering-based neural network pattern classifier depicts the patterns of given classes using fuzzy rules and categorizes the patterns on unseen data through fuzzy rules. Least squares estimator(LSE) or weighted least squares estimator(WLSE) is typically used in order to estimate the coefficients of polynomial function, but this study proposes a novel coefficient estimate method which includes advantages of the existing methods. The premise part of fuzzy rule depicts input space as "If" clause of fuzzy rule through fuzzy c-means(FCM) clustering, while the consequent part of fuzzy rule denotes output space through polynomial function such as linear, quadratic and their coefficients are estimated by the proposed local least squares estimator(LLSE)-based learning. In order to evaluate the performance of the proposed pattern classifier, the variety of machine learning data sets are exploited in experiments and through the comparative analysis of performance, it provides that the proposed LLSE-based learning method is preferable when compared with the other learning methods conventionally used in previous literature.

Reconstruction from Feature Points of Face through Fuzzy C-Means Clustering Algorithm with Gabor Wavelets (FCM 군집화 알고리즘에 의한 얼굴의 특징점에서 Gabor 웨이브렛을 이용한 복원)

  • 신영숙;이수용;이일병;정찬섭
    • Korean Journal of Cognitive Science
    • /
    • v.11 no.2
    • /
    • pp.53-58
    • /
    • 2000
  • This paper reconstructs local region of a facial expression image from extracted feature points of facial expression image using FCM(Fuzzy C-Meang) clustering algorithm with Gabor wavelets. The feature extraction in a face is two steps. In the first step, we accomplish the edge extraction of main components of face using average value of 2-D Gabor wavelets coefficient histogram of image and in the next step, extract final feature points from the extracted edge information using FCM clustering algorithm. This study presents that the principal components of facial expression images can be reconstructed with only a few feature points extracted from FCM clustering algorithm. It can also be applied to objects recognition as well as facial expressions recognition.

  • PDF