• 제목/요약/키워드: C-Means clustering

검색결과 362건 처리시간 0.021초

Hard 분산 분할 기반 추론 시스템을 이용한 비선형 공정 모델링 (Nonlinear Process Modeling Using Hard Partition-based Inference System)

  • 박건준;김용갑
    • 한국정보전자통신기술학회논문지
    • /
    • 제7권4호
    • /
    • pp.151-158
    • /
    • 2014
  • 본 논문에서는 Hard 분산 분할 방법을 이용하는 추론 시스템을 소개하고 비선형 공정을 모델링한다. 이를 위해 입력 공간을 분산 형태로 분할하고 소속 정도가 0 또는 1을 갖는 Hard 분할 방법을 이용한다. 제안한 방법은 C-Means 클러스터링 알고리즘에 의해 구현되며, 초기 중심값에 민감한 단점을 보완하기 위해 LBG 알고리즘을 적용하여 이진 분할에 의한 초기 중심값을 이용한다. Hard 분산 분할된 입력 공간은 규칙 기반의 시스템 모델링에서 규칙을 형성한다. 규칙의 전반부 파라미터는 C-Means 클러스터링 알고리즘에 의한 소속행렬로 결정된다. 규칙의 후반부는 다항식 함수의 형태로 표현되며, 각 규칙의 후반부 파라미터들은 표준 최소자승법에 의해 동정된다. 비선형 공정으로는 널리 이용되는 데이터를 이용하여 비선형 공정을 모델링한 후 특성을 평가한다.

Incremental Fuzzy Clustering Based on a Fuzzy Scatter Matrix

  • Liu, Yongli;Wang, Hengda;Duan, Tianyi;Chen, Jingli;Chao, Hao
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.359-373
    • /
    • 2019
  • For clustering large-scale data, which cannot be loaded into memory entirely, incremental clustering algorithms are very popular. Usually, these algorithms only concern the within-cluster compactness and ignore the between-cluster separation. In this paper, we propose two incremental fuzzy compactness and separation (FCS) clustering algorithms, Single-Pass FCS (SPFCS) and Online FCS (OFCS), based on a fuzzy scatter matrix. Firstly, we introduce two incremental clustering methods called single-pass and online fuzzy C-means algorithms. Then, we combine these two methods separately with the weighted fuzzy C-means algorithm, so that they can be applied to the FCS algorithm. Afterwards, we optimize the within-cluster matrix and betweencluster matrix simultaneously to obtain the minimum within-cluster distance and maximum between-cluster distance. Finally, large-scale datasets can be well clustered within limited memory. We implemented experiments on some artificial datasets and real datasets separately. And experimental results show that, compared with SPFCM and OFCM, our SPFCS and OFCS are more robust to the value of fuzzy index m and noise.

Mobile User Interface Pattern Clustering Using Improved Semi-Supervised Kernel Fuzzy Clustering Method

  • Jia, Wei;Hua, Qingyi;Zhang, Minjun;Chen, Rui;Ji, Xiang;Wang, Bo
    • Journal of Information Processing Systems
    • /
    • 제15권4호
    • /
    • pp.986-1016
    • /
    • 2019
  • Mobile user interface pattern (MUIP) is a kind of structured representation of interaction design knowledge. Several studies have suggested that MUIPs are a proven solution for recurring mobile interface design problems. To facilitate MUIP selection, an effective clustering method is required to discover hidden knowledge of pattern data set. In this paper, we employ the semi-supervised kernel fuzzy c-means clustering (SSKFCM) method to cluster MUIP data. In order to improve the performance of clustering, clustering parameters are optimized by utilizing the global optimization capability of particle swarm optimization (PSO) algorithm. Since the PSO algorithm is easily trapped in local optima, a novel PSO algorithm is presented in this paper. It combines an improved intuitionistic fuzzy entropy measure and a new population search strategy to enhance the population search capability and accelerate the convergence speed. Experimental results show the effectiveness and superiority of the proposed clustering method.

퍼지 클러스터링을 이용한 심전도 신호의 구분 알고리즘에 관한 연구 (A Study on Labeling Algorithm of ECG Signal using Fuzzy Clustering)

  • 공인욱;권혁제;이정환;이명호
    • 제어로봇시스템학회논문지
    • /
    • 제5권4호
    • /
    • pp.427-436
    • /
    • 1999
  • This paper describes an ECG signal labeling algorithm based on fuzzy clustering, which is very useful to the automated ECG diagnosis. The existing labeling methods compares the crosscorrelations of each wave form using IF-THEN binary logic, which tends to recognize the same wave forms such as different things when the wave forms have a little morphological variation. To prevent this error, we have proposed as ECG signal labeling algorithm using fuzzy clustering. The center and the membership function of a cluster is calculated by a cluster validity function. The dominant cluster type is determined by RR interval, and the representative beat of each cluster is determined by MF (Membership Function). The problem of IF-THEN binary logic is solved by FCM (Fuzzy C-Means). The MF and the result of FCM can be effectively used in the automated fuzzy inference -ECG diagnosis.

  • PDF

연속 동조 방법을 이용한 퍼지 집합 퍼지 모델의 유전자적 최적화 (Genetic Optimization of Fyzzy Set-Fuzzy Model Using Successive Tuning Method)

  • 박건준;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.207-209
    • /
    • 2007
  • In this paper, we introduce a genetic optimization of fuzzy set-fuzzy model using successive tuning method to carry out the model identification of complex and nonlinear systems. To identity we use genetic alrogithrt1 (GA) sand C-Means clustering. GA is used for determination the number of input, the seleced input variables, the number of membership function, and the conclusion inference type. Information Granules (IG) with the aid of C-Means clustering algorithm help determine the initial paramters of fuzzy model such as the initial apexes of the, membership functions in the premise part and the initial values of polyminial functions in the consequence part of the fuzzy rules. The overall design arises as a hybrid structural and parametric optimization. Genetic algorithms and C-Means clustering are used to generate the structurally as well as parametrically optimized fuzzy model. To identify the structure and estimate parameters of the fuzzy model we introduce the successive tuning method with variant generation-based evolution by means of GA. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

학습시간을 개선한 Fuzzy c-means 알고리즘 (The Enhancement of Learning Time in Fuzzy c-means algorithm)

  • 김형철;조제황
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
    • /
    • pp.113-116
    • /
    • 2001
  • The conventional K-means algorithm is widely used in vector quantizer design and clustering analysis. Recently modified K-means algorithm has been proposed where the codevector updating step is as fallows: new codevector = current codevector + scale factor (new centroid - current codevector). This algorithm uses a fixed value for the scale factor. In this paper, we propose a new algorithm for the enhancement of learning time in fuzzy c-means a1gorithm. Experimental results show that the proposed method produces codebooks about 5 to 6 times faster than the conventional K-means algorithm with almost the same Performance.

  • PDF

SUPPORT VECTOR MACHINE USING K-MEANS CLUSTERING

  • Lee, S.J.;Park, C.;Jhun, M.;Koo, J.Y.
    • Journal of the Korean Statistical Society
    • /
    • 제36권1호
    • /
    • pp.175-182
    • /
    • 2007
  • The support vector machine has been successful in many applications because of its flexibility and high accuracy. However, when a training data set is large or imbalanced, the support vector machine may suffer from significant computational problem or loss of accuracy in predicting minority classes. We propose a modified version of the support vector machine using the K-means clustering that exploits the information in class labels during the clustering process. For large data sets, our method can save the computation time by reducing the number of data points without significant loss of accuracy. Moreover, our method can deal with imbalanced data sets effectively by alleviating the influence of dominant class.

Data Clustering Method Using a Modified Gaussian Kernel Metric and Kernel PCA

  • Lee, Hansung;Yoo, Jang-Hee;Park, Daihee
    • ETRI Journal
    • /
    • 제36권3호
    • /
    • pp.333-342
    • /
    • 2014
  • Most hyper-ellipsoidal clustering (HEC) approaches use the Mahalanobis distance as a distance metric. It has been proven that HEC, under this condition, cannot be realized since the cost function of partitional clustering is a constant. We demonstrate that HEC with a modified Gaussian kernel metric can be interpreted as a problem of finding condensed ellipsoidal clusters (with respect to the volumes and densities of the clusters) and propose a practical HEC algorithm that is able to efficiently handle clusters that are ellipsoidal in shape and that are of different size and density. We then try to refine the HEC algorithm by utilizing ellipsoids defined on the kernel feature space to deal with more complex-shaped clusters. The proposed methods lead to a significant improvement in the clustering results over K-means algorithm, fuzzy C-means algorithm, GMM-EM algorithm, and HEC algorithm based on minimum-volume ellipsoids using Mahalanobis distance.

신경망 및 통계적 방법에 의한 클러스터링 성능평가 (A Study on Performance Evaluation of Clustering Algorithms using Neural and Statistical Method)

  • 윤석환;민준영;신용백
    • 산업경영시스템학회지
    • /
    • 제19권37호
    • /
    • pp.41-51
    • /
    • 1996
  • This paper evaluates the clustering performance of a neural network and a statistical method. Algorithms which are used in this paper are the GLVQ(Generalized Learning vector Quantization) for a neural method and the k-means algorithm fer a statistical clustering method. For comparison of two methods, we calculate the Rand's c statistics. As a result, the mean of c value obtained with the GLVQ is higher than that obtained with the k-means algorithm, while standard deviation of c value is lower. Experimental data sets were the Fisher's IRIS data and patterns extracted from handwritten numerals.

  • PDF

노이즈에 강한 밀도를 이용한 Fuzzy C-means 클러스터링 알고리즘 (Noise resistant density based Fuzzy C-means Clustering Algorithm)

  • 고정원;최병인;이정훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.211-214
    • /
    • 2006
  • Fuzzy C-Means(FCM) 알고리즘은 probabilitic 멤버쉽을 사용하는 클러스터링 방법으로서 널리 쓰이고 있다. 하지만 이 방법은 노이즈에 대하여 민감한 성질을 가진다는 단점이 있다. 따라서 본 논문에서는 이러한 노이즈에 민감한 성질을 보완하기 위해서 데이터의 밀도추정을 이용하여 새로운 FCM 알고리즘을 제안한다. 본 논문에서 제안된 알고리즘은 FCM과 비슷한 성능의 클러스터링 수행이 가능하며, 노이즈가 포함된 데이터에서는 FCM보다 더 나은 성능을 보여준다.

  • PDF