• Title/Summary/Keyword: C-Means clustering

Search Result 363, Processing Time 0.026 seconds

Design of Optimized pRBFNNs-based Night Vision Face Recognition System Using PCA Algorithm (PCA알고리즘을 이용한 최적 pRBFNNs 기반 나이트비전 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Jang, Byoung-Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.225-231
    • /
    • 2013
  • In this study, we propose the design of optimized pRBFNNs-based night vision face recognition system using PCA algorithm. It is difficalt to obtain images using CCD camera due to low brightness under surround condition without lighting. The quality of the images distorted by low illuminance is improved by using night vision camera and histogram equalization. Ada-Boost algorithm also is used for the detection of face image between face and non-face image area. The dimension of the obtained image data is reduced to low dimension using PCA method. Also we introduce the pRBFNNs as recognition module. The proposed pRBFNNs consists of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned by using Fuzzy C-Means clustering. In the conclusion part of rules, the connection weights of pRBFNNs is represented as three kinds of polynomials such as linear, quadratic, and modified quadratic. The essential design parameters of the networks are optimized by means of Differential Evolution.

Design of Face Recognition algorithm Using PCA&LDA combined for Data Pre-Processing and Polynomial-based RBF Neural Networks (PCA와 LDA를 결합한 데이터 전 처리와 다항식 기반 RBFNNs을 이용한 얼굴 인식 알고리즘 설계)

  • Oh, Sung-Kwun;Yoo, Sung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.744-752
    • /
    • 2012
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as an one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problems. In data preprocessing part, Principal Component Analysis(PCA) which is generally used in face recognition, which is useful to express some classes using reduction, since it is effective to maintain the rate of recognition and to reduce the amount of data at the same time. However, because of there of the whole face image, it can not guarantee the detection rate about the change of viewpoint and whole image. Thus, to compensate for the defects, Linear Discriminant Analysis(LDA) is used to enhance the separation of different classes. In this paper, we combine the PCA&LDA algorithm and design the optimized pRBFNNs for recognition module. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as two kinds of polynomials such as constant, and linear. The coefficients of connection weight identified with back-propagation using gradient descent method. The output of the pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to face image(ex Yale, AT&T) datasets and then demonstrated from the viewpoint of the output performance and recognition rate.

Design of Digits Recognition System Based on RBFNNs : A Comparative Study of Pre-processing Algorithms (방사형 기저함수 신경회로망 기반 숫자 인식 시스템의 설계 : 전처리 알고리즘을 이용한 인식성능의 비교연구)

  • Kim, Eun-Hu;Kim, Bong-Youn;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.416-424
    • /
    • 2017
  • In this study, we propose a design of digits recognition system based on RBFNNs through a comparative study of pre-processing algorithms in order to recognize digits in handwritten. Histogram of Oriented Gradient(HOG) is used to get the features of digits in the proposed digits recognition system. In the pre-processing part, a dimensional reduction is executed by using Principal Component Analysis(PCA) and (2D)2PCA which are widely adopted methods in order to minimize a loss of the information during the reduction process of feature space. Also, The architecture of radial basis function neural networks consists of three functional modules such as condition, conclusion, and inference part. In the condition part, the input space is partitioned with the use of fuzzy clustering realized by means of the Fuzzy C-Means algorithm. Also, it is used instead of gaussian function to consider the characteristic of input data. In the conclusion part, the connection weights are used as the extended type of polynomial expression such as constant, linear, quadratic and modified quadratic. By using MNIST handwritten digit benchmarking database, experimental results show the effectiveness and efficiency of proposed digit recognition system when compared with other studies.

Damage analysis of carbon nanofiber modified flax fiber composite by acoustic emission

  • Li, Dongsheng;Shao, Junbo;Ou, Jinping;Wang, Yanlei
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.127-136
    • /
    • 2017
  • Fiber reinforced polymer (FRP) has received widespread attention in the field of civil engineering because of its superior durability and corrosion resistance. This article presents the damage mechanisms of a novelty composite called carbon nanofiber modified flax fiber polymer (CNF-modified FFRP). The ability of acoustic emission (AE) to detect damage evolution for different configurations of specimens under uniaxial tension was examined, and some useful AE characteristic parameters were obtained. Test results shows that the mechanical properties of modified composites are associated with the CNF content and the evenness of CNF dispersed in the epoxy matrix. Various damage mechanisms was established by means of scanning electron microscope images. The fuzzy c-means clustering were proposed to classify AE events into groups representing different generation mechanisms. The classifiers are constructed using the traditional AE features -- six parameters from each burst. Amplitude and peak-frequency were selected as the best cluster-definition features from these AE parameters. After comprehensive comparison, a correlation between these AE events classes and the damage mechanisms observed was proposed.

Data Clustering Algorithm Adaptive to Data Forms (데이터 형태에 적응하는 클러스터링 알고리즘)

  • Lee, K.H.;Lee, K.C.
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10b
    • /
    • pp.1433-1436
    • /
    • 2000
  • 클러스터링에 있어서 k-means[7], DBSCAN[2], CURE[4], ROCK[5], PAM[8], 같은 기존의 알고리즘은 원형이나 타원형 등의 어느 고정된 모양에 의해 클러스터를 결정한다. 만약 클러스터 하려는 데이터의 분포가 우연히 알고리즘의 결정된 모양과 일치하면 정확한 해를 얻을 수 있다. 하지만 자연적인 데이터의 분포에서는 발생하기 어렵다. 데이터의 형태를 추적하여 이러한 문제점을 해결한 CHAMELEON[1] 알고리즘이 최근에 발표되었다. 하지만 모양에는 독립적이나 데이터의 양이 증가함에 따라 소요되는 시간이 폭발적으로 증가한다. 이것은 기존의 마이닝 데이터들이 대용량이라는 것을 고려하면 현실에 적용하기 힘든 문제점이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 K-means[7]]를 이용한 대표를 선출하는 방법으로 CHAMELEON[1]의 문제점 개선(EF-CHAMELEON)을 시도하였으며 여러 자연적인 형태의 도형들은 아주 작은 원형들의 집합으로 구성 될 수 있다는 생각을 기본으로 잡음에 영향을 받지 않을 정도로 아주 작은 초기 다수의 소형 클러스터를 K-mean을 이용하여 구성하고 이를 다시 크러스터간의 상대적인 거리를 이용하여 다시 머지 하는 방법으로 모양에 의존적인 문제를 해결하며 비교사 학습(unsupervised learning)에 충실하기 위해 임계값을 적용 적정 단계에서 알고리즘을 멈추게 한 ADF 알고리즘을 소개한다. 실험 데이터는 기존의 여러 클러스터링 알고리즘이 판별 할 수 없었던 다양한 모양을 가지고있는 2차원 배열을 사용하여 ADF. CHAMELEON[1], EF-CHAMELEON,의 성능을 비교하였다.

  • PDF

A study on improving the evaluation of motorway functions using Trip Length Frequency Distribution(TLFD) (통행거리빈도분포를 활용한 고속도로 기능 평가 개선 연구)

  • Kwon, Ceholwoo;Yoon, Byoungjo
    • Journal of Urban Science
    • /
    • v.11 no.2
    • /
    • pp.9-17
    • /
    • 2022
  • The purpose of this study is to develop an index for evaluating the function of a new motorway using the travel distance frequency distribution (TLFD) calculated using the vehicle travel route big data, and to overcome the limitations of the evaluation through the existing traffic volume. The mobility evaluation index of motorways was developed by applying it to the TLFD data table in 2019. The smaller the value of the mobility evaluation index of the link is calculated, the more it is a link with mainly short-distance travel, and the higher the value of the mobility evaluation index, the more it means a link with mainly long-distance travel. The accessibility evaluation index was calculated through the result of the mobility evaluation index of all motorways developed, and all motorways were grouped into three groups using K-means clustering. Group A was found to exist inside a large city and consisted of motorways with many short-distance traffic, Group B was investigated as acting as an arterial between groups, and Group C was classified as a motorway consisting mainly of long-distance traffic connecting large cities and large cities. This study is significant in developing a new motorway function evaluation index that can overcome the limitations of motorway function evaluation through the existing traffic volume. It is expected that this study can be a reasonable comprehensive indicator in the operation and planning process of motorways.

A New Approach of Self-Organizing Fuzzy Polynomial Neural Networks Based on Information Granulation and Genetic Algorithms (정보 입자화와 유전자 알고리즘에 기반한 자기구성 퍼지 다항식 뉴럴네트워크의 새로운 접근)

  • Park Ho-Sung;Oh Sung-Kwun;Kim Hvun-Ki
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.2
    • /
    • pp.45-51
    • /
    • 2006
  • In this paper, we propose a new architecture of Information Granulation based genetically optimized Self-Organizing Fuzzy Polynomial Neural Networks (IG_gSOFPNN) that is based on a genetically optimized multilayer perceptron with fuzzy polynomial neurons (FPNs) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially information granulation and genetic algorithms. The proposed IG_gSOFPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional SOFPNNs. The design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics (such as the number of input variables, the order of the polynomial of the consequent part of fuzzy rules, and a collection of the specific subset of input variables) and addresses specific aspects of parametric optimization. In addition, the fuzzy rules used in the networks exploit the notion of information granules defined over system's variables and formed through the process of information granulation. That is, we determine the initial location (apexes) of membership functions and initial values of polynomial function being used in the premised and consequence part of the fuzzy rules respectively. This granulation is realized with the aid of the hard c-menas clustering method (HCM). To evaluate the performance of the IG_gSOFPNN, the model is experimented with using two time series data(gas furnace process and NOx process data).

Design of Optimized Radial Basis Function Neural Networks Classifier with the Aid of Principal Component Analysis and Linear Discriminant Analysis (주성분 분석법과 선형판별 분석법을 이용한 최적화된 방사형 기저 함수 신경회로망 분류기의 설계)

  • Kim, Wook-Dong;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.735-740
    • /
    • 2012
  • In this paper, we introduce design methodologies of polynomial radial basis function neural network classifier with the aid of Principal Component Analysis(PCA) and Linear Discriminant Analysis(LDA). By minimizing the information loss of given data, Feature data is obtained through preprocessing of PCA and LDA and then this data is used as input data of RBFNNs. The hidden layer of RBFNNs is built up by Fuzzy C-Mean(FCM) clustering algorithm instead of receptive fields and linear polynomial function is used as connection weights between hidden and output layer. In order to design optimized classifier, the structural and parametric values such as the number of eigenvectors of PCA and LDA, and fuzzification coefficient of FCM algorithm are optimized by Artificial Bee Colony(ABC) optimization algorithm. The proposed classifier is applied to some machine learning datasets and its result is compared with some other classifiers.

Improved Algorithm for Fully-automated Neural Spike Sorting based on Projection Pursuit and Gaussian Mixture Model

  • Kim, Kyung-Hwan
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.705-713
    • /
    • 2006
  • For the analysis of multiunit extracellular neural signals as multiple spike trains, neural spike sorting is essential. Existing algorithms for the spike sorting have been unsatisfactory when the signal-to-noise ratio(SNR) is low, especially for implementation of fully-automated systems. We present a novel method that shows satisfactory performance even under low SNR, and compare its performance with a recent method based on principal component analysis(PCA) and fuzzy c-means(FCM) clustering algorithm. Our system consists of a spike detector that shows high performance under low SNR, a feature extractor that utilizes projection pursuit based on negentropy maximization, and an unsupervised classifier based on Gaussian mixture model. It is shown that the proposed feature extractor gives better performance compared to the PCA, and the proposed combination of spike detector, feature extraction, and unsupervised classification yields much better performance than the PCA-FCM, in that the realization of fully-automated unsupervised spike sorting becomes more feasible.

The Development of the Vehicles Information Detector (Al 기법을 이용한 차량 정보 수집 장비 개발)

  • Moon, Hak-Yong;Ryu, Seung-Ki;Kim, Young-Chun;Byeon, Sang-Cheol;Choi, Do-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1283-1285
    • /
    • 2002
  • This study is developed vehicle information detector using loop and piezo sensors. This study would analyze the over all problems concerning our road conditions, environmental matters and unique features of our traffic matters; moreover, with these it would develope the hardware, software, car classification algorithm applied by artificial intelligence and traffic monitoring program which can be easily fixed. This can be divided into traffic detecting algorithm and car classification algorithm. Especially, we have developed the car classification algorithm used by C-means Fuzzy Clustering method.

  • PDF