• Title/Summary/Keyword: C-H bond condensation

Search Result 10, Processing Time 0.031 seconds

Generation of Si-O-C Bond without Si-$CH_3$ Bond in Hybrid Type SiOC Film

  • Oh, Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.1-4
    • /
    • 2008
  • The chemical shift of SiOC film was observed according to the flow rate ratio. SiOC film had the broad main band of $880\sim1190cm^{-1}$ and the sharp Si-$CH_3$ bond at $1252cm^{-1}$, and the peak position of the main bond in the infrared spectra moved to high frequency according to the increasing of an BTMSM flow rate. So the increment of the alkyl group induced the C-H bond condensation in the film, and shows the blueshift in the infrared spectra. In the case of P5000 system of Applied Materials Corporation, the strong bond of Si-CH3 bond in precursor does not enough to dissociated and ionized, because low plasma energy due to the capactive coupled CVD. Therefore, there was the sharp peak of Si-$CH_3$ bond at $1252cm^{-1}$.

  • PDF

Effect of Alumina Nanooxide Application on Nitrendipine Manufacturing Process (알루미나 나노산화물이 Nitrendipine 제조 공정에 미치는 영향)

  • Chae, E.J.;Uhm, Y.R.;Han, B.S.;Rhee, C.K.;Park, S.E.
    • Journal of Powder Materials
    • /
    • v.14 no.2 s.61
    • /
    • pp.127-131
    • /
    • 2007
  • The alumina nano powders synthesized by levitational gas condensation (LGC) method were applied to catalyst in manufacturing process of Hanzsch reaction for Nitrendipine. The L-tartaric acid on the surface is carried out with participation of carbonyl fragments, O-H, C-H bonds which affects stereo selectivity, yield on the reagents positively. From the analysis of the IR-spectroscopy, the carbonyl fragments, O-H, and C-H bond were created by the catalytic reaction. From the analysis of the rR-spectroscopy, the carbonyl fragments, O-H, and C-H bond were created by the catalytic reaction. The newly created bonds made a chiral center on the final product.

Annealing effects of organic inorganic hybrid silica material with C-H hydrogen bonds (C-H 수소결합을 갖는 유무기 하이브리드 물질에서의 열처리 효과)

  • Oh, Teresa
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.20-25
    • /
    • 2007
  • In this paper, It was reported the dielectric constant in organic inorganic hybrid silica material such as SiOC film modeling of bond structure by annealing in organic properties. The organic inorganic hybrid silica material were deposited using bis-trimethylsilymethane (BTMSM, [(CH3)3Si]2CH2) and oxygen gas precursor by a plasma chemical vapor deposition (CVD). The organic inorganic hybrid silica material have three types according to the deposition condition. The dielectric constant of the films were performed MIS(Al/Si-O-C film/p-Si) structure. The C 1s spectra in organin inorganic silica materials with the flow rate ratio of O2/BTMSM=1.5 was organometallic carbon with the peak 282.9 eV by XPS. It means that organometallic carbon component is the cross-link bonding structure with good stability. The dielectric constant was the lowest at annealed films with cross-link bonding structure.

High Selective Oxidation of Alcohols Based on Trivalent Ion (Cr3+ and Co3+) Complexes Anchored on MCM-41 as Heterogeneous Catalysts

  • Shojaei, Abdollah Fallah;Rafie, Mahboubeh Delavar;Loghmani, Mohammad Hassan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2748-2752
    • /
    • 2012
  • Cr(III) and Co(III) complexes with acetylacetonate were anchored onto a mesoporous MCM-41 through Schiff condensation. The materials were characterized by XRD, FT-IR, BET, CHN and ICP techniques. Elemental analysis of samples revealed that one C=N bond was formed through Schiff condensation on MCM-41 surface. The catalysts were tested for the alcohol oxidations using t-butyl hydroperoxide (TBHP) and $H_2O_2$ as oxidant. The catalytic experiments were carried out at both room temperature and reflux condition. Various solvents such as dichloromethane, acetonitrile and water were examined in the oxidation of alcohols. Among the different solvents, catalytic activity is found more in acetonitrile. Further, the catalysts were recycled three times in the oxidation of alcohols and no major change in the conversion and selectivity is observed, which shows that the immobilized metal-acetylacetonate complexes are stable under the present reaction conditions.

Correlation between the Potential Barrier and Variation of Temperature on SiOC thin film (탄소 주입 실리콘 산화 절연박막에서 전위장벽과 온도 변화에 대한 상관성)

  • Oh, Teresa
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2247-2252
    • /
    • 2008
  • The SiOC films as the carbon doped silicon oxide film were prepared with the variation of flow rater ratios by plasma enhanced chemical vapor deposition. The samples were analyzed by the fourier transform infrared spectroscopy, I-V measurement and scanning electron microscopy. The samples were shown the chemical shift according to the flow rate ratios, and the grain did not formed at the sample with hybrid properties. The leakage currents decreased according to the increasing of the substrate temperature at the sample with hybrid properties, but the potential barrier increased.

Synthesis of Renewable Jet Fuel Precursors from C-C Bond Condensation of Furfural and Ethyl Levulinate in Water

  • Cai, Chiliu;Liu, Qiying;Tan, Jin;Wang, Tiejun;Zhang, Qi;Ma, Longlong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.519-526
    • /
    • 2016
  • Biomass derived jet fuel is proven as a potential alternative for the currently used fossil oriented energy. The efficient production of jet fuel precursor with special molecular structure is prerequisite in producing biomass derived jet fuel. We synthesized a new jet fuel precursor containing branched $C_{15}$ framework by aldol condensation of furfural (FA) and ethyl levulinate (EL), where the latter of two could be easily produced from lignocellulose by acid catalyzed processes. The highest yield of 56% for target jet fuel precursor could be obtained at the optimal reaction condition (molar ratio of FA/EL of 2, 323 K, 50 min) by using KOH as catalyst. The chemical structure of $C_{15}$ precursor was specified as (3E, 5E)-6-(furan-2-yl)-3-(furan-2-ylmethylene)-4-oxohex-5-enoic acid ($F_2E$). For stabilization, this yellowish solid precursor was hydrogenated at low temperature to obtain C=C bonds saturated product, and the chemical structure was proposed as 4-oxo-6-(tetrahydrofuran-2-yl)-3-(tetrahydrofuran-2-yl)-methyl hexanoic acid ($H-F_2E$). The successful synthesis of the new jet fuel precursors showed the significance that branched jet fuel could be potentially produced from biomass derived FA and EL via fewer steps.

Formation of Antibacterial Film dried at Room Temperature using nano-sized TiO2 Particle (TiO2 나노 입자를 이용한 상온건조용 항균 코팅)

  • Choi, Young Jin;Kim, Donggyu;Kim, Insoo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.401-409
    • /
    • 2010
  • This study was performed to develop an antibacterial film that can be dried at room temperature. A nanosized TiO$_2$ particle-dispersed solution was prepared by the hydrothermal treatment of peroxo-titanic acid at 160${^{\circ}C}$ for 4h. The binder was synthesized through the hydrolysis and condensation reactions of TEOS (10cc) and GPTS (3.5cc) in the mixture of H$_2$O (30cc) and EtOH (30cc). The synthesized binder was mixed with 0.1 M of TiO$_2$ solution in a volume ratio of binder/TiO$_2$ solution=0.25~0.5. The glass substrate was coated after using the dip coating method, which was then followed by drying for over 2h at room temperature. Although the TiO$_2$ particles did not chemically-bond to the binder, the coating layer strongly adhered to the substrate and displayed good antibacterial properties.

Characterization of Silica Sol Particle Prepared by Sol-Gel Reaction from Sodium Silicate Solution (소디움실리케이트 수용액(水溶液)으로부터 솔-젤 반응(反應)에 의해 제조(製造)된 실리카 솔 입자특성(粒子特性) 고찰(考察))

  • Kim, Chul-Joo;Kim, Sung-Don;Jang, Hee-Dong;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.18 no.6
    • /
    • pp.30-37
    • /
    • 2009
  • Silica sol was prepared from the mixture of sodium silicate solution and oxidized silicate solution in which sodium had been removed by sol-gel process. The properties of sodium silicate solution and silicate solution thus prepared were characterized by yellow silicomolydate method. Moreover, the formation and growth of silica sol from sodium silicate solution was investigated. Sodium silicate solution with 2% of $SiO_2$ contains 95% of reactive silicate, and 50% of reactive silicate participates sol-gel reaction. From the results of FT-IR analysis, it was found that the intensity of silanol bond decreased and the intensity of siloxane bond increased with increasing reaction temperature. Zeta potential of silica sol prepared at each condition was -40~-60 mV and it could be known that silica sol in this study was well dispersed. The silica sol with 5~10 nm size could be prepared by heating the mixed solution of sodium silicate and silicate solution. And the silica sol grew into about 20 nm as silicate solution was added to silica sol solution.

Miscibility and Specific Intermolecular Interaction Strength of PBI/PI Blends Depending on Polyimide Structure(II) - Blend Systems with PIs Synthesized by DSDA - (폴리이미드 구조변화에 의한 방향족 PBI/PI 블렌드의 상용성 및 상호작용의 세기(II) - DSDA로 합성한 PI들과의 블랜드들 -)

  • Ahn, Tae-Kwang
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.207-213
    • /
    • 1998
  • On the basis of the previous study[1], miscibility were investigated and intermolecular interaction strength for the miscibility were relatively compared for the blends poly{2,2-(m-phenylene)-5,5'-bibenzimidazole}(PBI) with two aromatic polyimides (PIs) synthesized by another dianhydride. Aromatic PAAs were prepared by the reaction of condensation of two diamines, 4,4'-methylene dianiline(4,4'-MDA) and 4,4'-oxydianiline(4,4'-ODA) with 3,3',4,4'-diphenylsulfone tetracarboxylic dianhydride(DSDA) using DMAc, and then converted into PIs after curing. PBI/PAA blends were prepared by solution blending. Cast films or precipitated powders of the PBI/PAA blends were cared at a high temperature to transform into PBI/PIs blends. Miscibility and specific intermolecular interaction for miscibility in the blends were investigated, and compared with previous polyimide structures of PBI/PIs blends [1]. Two blends, PBI/DSDA+4,4'-MDA(Blend-V) and PBI/DSDA+4,4'-ODA(Blend-VI), were found miscible : the evidences were optically clear films, synergistic single composition dependent $T_g{\prime}s$, and frequency shifts of N-H stretching band as much as $39{\sim}40cm^{-1}$, and of C=O stretching band near 1730 and $1780cm^{-1}$, 5~6 and $3{\sim}4cm^{-1}$, respectively. The specific intermolecular interactions existing between PBI and PIs were relatively analyzed with the area(A) formed between the $T_g{\prime}s$ of the measured and that of the calculated by the Fox equation at all compositions, the ${\kappa}$ values in Gordon-Taylor equation obtained from the measured $T_g{\prime}s$, and differences of the frequency shifts in the functional N-H and carbonyl stretching band. From the results, the area(A) and the ${\kappa}$ values for Blend-V and VI were smaller than those for Blend-III and IV used in previous study[1]. Differences of the frequency shifts in the functional groups(N-H and C=O) also showed similar tendency. Thus, specific intermolecular interaction strength in terms of hydrogen bonding of PBI/PI blends is dependent upon chemical structures of PIs, that is, PIs it seems that $SO_2$ group in dianhydride(DSDA) has weaker hydrogen bond strength than those of C=O in BTDA. In other words, it implies that the former occupied bulk space than the latter due to the sterric effect.

  • PDF

Durability Characteristics of Concrete with Nano Level Ceramic Based Coating (나노합성 세라믹계 도장재를 도포한 콘크리트의 내구성능)

  • Kim, Seong-Soo;Lee, Jeong-Bae;Han, Seung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.639-646
    • /
    • 2007
  • This study performed several tests for the durability of the concrete coated with nano synthesis ceramics which do not contain volatile organic compounds harmful to environment. The tests were adhesion test on dry and humid concrete, SEM test, MIP analysis, carbonation, chloride diffusion by electronic facilitation, freezing-thawing resistance, alkaline resistance, and brine resistance test. In the adhesion test on dry and humid concrete, nano synthesis ceramics coating produced the highest results among all the coatings tested. Nano synthesis ceramics adhered solidly on the concrete surface. The adhesive strength seemed to result from the hydrogen bond between nano synthesis ceramics which are inorganic and generated by hydrolysis and re-condensation reaction and the concrete's hydrates such as calcium silicate aluminate or calcium silicate hydrate. SEM test and MIP analysis results show surface structure with finest crevices pore in the nano synthesis ceramics coating applied concretes. In the carbonation, chloride diffusion, and freezing-thawing resistance tests, the concretes with nano synthesis ceramics coating indicated the best results. Based on these test results, further progress in application of nano synthesis ceramics coatings to various concrete structures including costal structures and sewerage arrangements can be expected.