• Title/Summary/Keyword: C-Fos genes

Search Result 71, Processing Time 0.027 seconds

NMDA (n-methyl-d-aspartate) Change Expression Level of Transcription Factors (Egr-1, c-jun, Junb, Fosb) mRNA in the Cerebellum Tissue of Balb/c Mouse (NMDA투여에 의한 transcription factor (Egr-1, C-Jun, JunB, FosB)의 발현 변화 양상)

  • Ha, Jong-Su;Kim, Jae-Wha;Song, Jae-Chan
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.1043-1050
    • /
    • 2015
  • Glutamate is one of the principle transmitters in the CNS. Ionotropic receptors of glutamate, selectively activated by N-methyl-D-aspartate (NMDA), play an important role in the processes of cell development, learning, memory, and etc. On the other hand, many studies discovered that over-activation of glutamate receptors leads to neurodegeneration and are known to be implicated in major areas of brain pathology. Any sustained effect of a transient NMDA receptor activation is likely to involve signaling to the nucleus and to trigger coordinated changes in gene expression. Classically, a set of immediate-early genes are induced first; some of genes are by themselves transcription factors that control expression of other target genes. This study provides understanding of changes of inducible transcription factors mRNA levels with RT-PCR by inducing over-activation of NMDA receptor with intraperitoneal NMDA injection. The experimental conditions were varied by 1, 5, 25, and 125 g/ of body weight NMDA and measured transcription factors mRNA levels are Egr-1, c-Jun, JunB, and FosB. Based on result obtained, inducible transcription factors mRNA in NMDA injection to mice with 5 g/body weight showed the greatest change. And ITF mRNA showed greatest change 24 hr after injection. The expression level of JunB mRNA was markedly changed. Up to the present days, no study clearly understood how ITF mRNA affected the apoptosis of purkinje cells in the cerebellum. The current study improves the understanding of the mechanism of apoptosis of purkinje cells in the cerebellum.

Quantitative RT-PCR for Measuring C-fos Gene Expression in Rat Brain after ECS (전기경련충격시 경쟁적 역전사 중합효소연쇄반응(CRT-PCR)을 이용한 흰쥐 뇌 c-fos 유전자의 발현 양식 분석)

  • Yang, Byung-Hwan;Lee, Jei-Wook;Park, Eung-Chul;Yu, Jae-Hak;Cho, Goang-Won;Yang, Bo-Gee;Chai, Young-Gyu
    • Korean Journal of Biological Psychiatry
    • /
    • v.3 no.2
    • /
    • pp.181-190
    • /
    • 1996
  • To clarify the mechanism of action of electroconvulsive shack(ECS) in respect to molecular biology, and to detect the quantitative amount of change of c-fos gene expression after ECS in the rat's brain, the authors obtained brain specimens from the striatum, cerebral cortex, hippocampus, and cerebellum. Each brain was removed within 30min. after ECS(130V, 0.5sec) and ECS-sham. Then we performed RT-PCR. The results are 1) ECS was found to affect the expression of immediate early genes. 2) the cerebral cortex and hippocampus was more influenced by ECS thon in the cerebellum and striatum. From these results, we can suggest that ECS is related to the mechanism of cognition, mood, memory which is correlated to cerebral cortex and hippocampus.

  • PDF

Effects of Bee Venom and Sweet Bee Venom Acupuncture on Functional Recovery and c-Fos Expression in the Brain after Sciatic Crushed Nerve Injury in Rats

  • Choi, Seung-Peom;Song, Yun-Kyung;Lim, Hyung-Ho
    • The Journal of Korean Medicine
    • /
    • v.31 no.3
    • /
    • pp.79-97
    • /
    • 2010
  • Background: Peripheral nerve injuries are commonly encountered clinical problems and often result in severe functional deficit. Bee venom acupuncture has traditionally been used to treat several inflammatory diseases and chronic pain conditions. Objectives: The aims of this study were to compare the effects of bee venom (general bee venom, BV) and sweet bee venom (allergen-removed bee venom, SBV) acupuncture on the recovery rate of locomotor function, the expression of brain-derived neurotrophic factor (BDNF) in the sciatic nerve, and the expression of c-Fos in the brain following sciatic crushed nerve injury in rats, and to evaluate differences due to administration areas. Method: Walking track analysis, Western blot for BDNF and tyrosine receptor kinase B (TrkB), and immunohistochemistry for c-Fos were performed. In this study, comparative analyses of the effects of BV and SBV acupuncture in relation to administration sites, contralateral side or ipsilateral side, were conducted. Results: In the present result, sciatic function index (SFI) in walking track analysis significantly decreased following sciatic crushed nerve injury. The expressions of BDNF and TrkB in the sciatic nerve increased after induction of sciatic crushed nerve injury. C-Fos expression in the ventrolateral periaqueductal gray (vlPAG) and paraventricular nucleus (PVN) also increased. BV and SBV acupuncture treatment improved the SFI in walking track analysis. Treatment with SBV at 1mg/kg showed more potent enhancing effect on SFI compared to BV. Treatment with 1mg/kg BV or 1mg/kg SBV acupuncture suppressed the BDNF and TrkB expression in the sciatic nerve. BV and SBV acupuncture treatment also suppressed c-Fos expression in the PVN and vlPAG regions. Treatment with SBV at 1mg/kg showed more potent suppressing effect on c-Fos expression compared to BV when injected into the contralateral side of the injured nerve. Generally we could not find significant difference in the effects between contralateral side and ipsilateral side of the injured nerve. Conclusion: We have shown that BV and SBV acupuncture treatment can be used as the effective therapeutic modality to ameliorate the symptoms of sciatic crushed nerve injury.

Identification of the Marker-Genes for Dioxin(2, 3, 7, 8- tetradibenzo-p-dioxin)-Induced Immune Dysfunction by Using the High-Density Oligonucleotide Microarray

  • Kim, Jeong-Ah;Lee, Eun-Ju;Chung, In Hye;Kim, Hyung-Lae
    • Genomics & Informatics
    • /
    • v.2 no.2
    • /
    • pp.75-80
    • /
    • 2004
  • In a variety of animal species, the perinatal exposure of experimental animals to the 2,3,7,8-tetrachlorodibenzo­p-dioxin (TCDD) leads to the immune dysfunction, which is more severe and persistent than that caused by adult exposure. We report here the changes of gene expression and the identification of the marker-genes representing the dioxin exposure. The expressions of the transcripts were analyzed using the 11 K oligonucleotide­microarray from the bone marrow cells of male C57BL/6J mice after an intraperitoneal injection of $1{\mu}g$ TCDD/kg body weight at various time intervals: gestational 6.5 day(G6.5), 13.5 day(G13.5), 18.5 day(G18.5), and postnatal 3 (P3W)and 6 week (P6W). The type of self-organizing maps(SOM) representing the specific exposure dioxin could be identified as follows; G6.5D(C14), G13.5D(C0, C5, C10, C18), G18.5D(7): P3W(C2, C21), and P6W(C4, C15, C20). The candidate marker-genes were restricted to the transcripts, which could be consistently expressed greater than $\pm$2-fold in three experiments. The resulting candidates were 85 genes, the characteristics of that were involved in cell physiology and cell functions such as cell proliferation and immune function. We identified the biomarker-genes for dioxin exposure: smc -like 2 from SOM C14 for the dioxin exposure at G6.5D, focal adhesion kinase and 6 other genes from C0, and protein tyrosine phosphatase 4a2 and 3 other genes from C5 for G13.5D, platelet factor 4 from C7 for G18.5D, fos from C2 for P3W.

The Neuroprotective Effects of Uncariae Ramulus et Uncus on focal cerebral ischemia in rats brains (백서(白鼠)의 국부(局部) 뇌경색(腦硬塞)에 대한 조구등(釣鉤藤)의 신경보호(神經保護) 효과(效果))

  • Kwon Hyung-Su;Oh Yong-Seong;Lee So-Yeon;Park Chi-Sang;Park Chang-Gook;Jang Woo-Seok
    • The Journal of Internal Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.181-189
    • /
    • 2003
  • The goal of this study is to investigate whether Uncariae Ramulus et Uncus can protect nerve cells against ischemic neuronal damage is caused by middle cerebral artery occlusion (MCAO) in rats' brains and to investigate whether the neuroprotective effect of Uncariae Ramulus et Uncus is concerned with IEGs(immediate early genes) expression. Uncariae Ramulus et Uncus(l00mg/kg) was administered immediately after 2 hours of MCAO and maintained for 7 days. On 7th days after 2 hours of MCAO, the brains of rats were sliced through the hippocampus. c-Fos immunohistochemistry stain and Cresyl violet stain were done for microscopic examination. Each number of viable neurons and c-Fos immunoreactive cells in CA1 was counted. The density of neurons and c-Fos immunoreactive cells were significantly decreased in MCAO-operated ischemic rats compared to that sham-operated rats. Administration of Uncariae Ramulus et Uncus group significantly elevated MCAO-induced decrease in density of neurons, and elevated MCAO-induced decrease in c-Fos immunoreactive cells. These results suggest that the neuroprotective effect of Uncariae Ramulus et Uncus against focal cerebral ischemia. Also, we hypothesized that neuroprotective mechanism of Uncariae Ramulus et Uncus is related to IEGs expression.

  • PDF

TNF-induced genes and Proteins

  • 이태호
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.11a
    • /
    • pp.17-20
    • /
    • 1993
  • As a step toward a more complete understanding of the molecular actions of TNF, we prepared a cDNA library from TNF-treated human FS-4 fibroblasts and used differential hybridization to identify cDNA clones corresponding to mRNAs enriched in TNF-treated eells. In Quiescent FS-4 cells n induces an increase in the level of some mRNAs within 20 to 30 min. Some of these immediate-early response mRNAs are elevated only transiently for about 30 to 120 min, e. g., c-fos and c-myc (Lin and Vilcek,1987) or the transcription factor IRF-1 (Fujita et al.1989). Such immediate-early gene products may be important for the activation of other genes, but their transient induction suggests that they are not the actual effector molecules responsible for the phenotypic changes induced by TNF. We chose a 3-h incubation with W because we were seeking cDNAs corresponding to messages that are more stably elevated after TNF treatment. Indeed, the results shown in Figure 8 and 9 indicate that all of the mRNAs corresponding to the eight TSG cDNAs isolated remained significantly elevated after 16h of continuous treatment with TNF, and their kinetics of induction were clearly different from those of the immediate-early response mRNAs such as c-fos, c-myc or IRF-1. Nevertheless, only the induction of TSG-21 (collagenase) and TSG-27 (stromelysin) nNAs was completely inhibited by cycloheximide and the induction of TSG-37 (metallothionein-II) was reduced in the presence of this inhibitor of protein synthesis. Induction of the other five TSG mRNAs by TNF was completelyresistant to cycloheximide, suggest ins that no protein intermediate is needed for the upregulation of these mRNAs.

  • PDF

Transcriptional Profile and Cellular Effects on Time Course & Doses Treatment of Methylmercury using Human cDNA Microarray System

  • Kim, Youn-Jung;Yun, Hye-Jung;Kim, Eun-Young;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.176-176
    • /
    • 2003
  • Methylmercury is known to have devastating effects on the mammalian nervous system. When human neuroblastoma SH-SY5Y cells were treated with methylmercury at sublethal concentrations (6.25 uM), up-regulated genes (39) & down-regulated genes (19) were identified by human 8k cDNA microarray. These genes are related with microtubule process, signal transduction pathway and cell death (apoptosis), Apoptosis-associated genes, HSP70, CDK inhibitor 1, FOS-like antigen were up-regulated and microtubule related genes like villin and dynein down-regultaed. To confirm the presence of apoptosis in cultured SH-SY5Y cells treated 6.25 and 1 uM methylmercury, we applied Annexin V-FITC assay followed by flow cytometric measurements after 6 and 24h. Studies on transcriptional and molecular effect by methylmercury may provide an insight into the neurotoxic effects of methylmercury in human neuronal cells and a possibility to develop more efficient and exact monitoring system of heavy metals as ubiquitous environmental pollutants.

  • PDF

Stem Cell Properties of Gastric Cancer Stem-Like Cells under Stress Conditions Are Regulated via the c-Fos/UCH-L3/β-Catenin Axis

  • Jae Hyeong Lee;Sang-Ah Park;Il-Geun Park;Bo Kyung Yoon;Jung-Shin Lee;Ji Min Lee
    • Molecules and Cells
    • /
    • v.46 no.8
    • /
    • pp.476-485
    • /
    • 2023
  • Gastric cancer stem-like cells (GCSCs) possess stem cell properties, such as self-renewal and tumorigenicity, which are known to induce high chemoresistance and metastasis. These characteristics of GCSCs are further enhanced by autophagy, worsening the prognosis of patients. Currently, the mechanisms involved in the induction of stemness in GCSCs during autophagy remain unclear. In this study, we compared the cellular responses of GCSCs with those of gastric cancer intestinal cells (GCICs) whose stemness is not induced by autophagy. In response to glucose starvation, the levels of β-catenin and stemness-related genes were upregulated in GCSCs, while the levels of β-catenin declined in GCICs. The pattern of deubiquitinase ubiquitin C-terminal hydrolase-L3 (UCH-L3) expression in GCSCs and GCICs was similar to that of β-catenin expression depending on glucose deprivation. We also observed that inhibition of UCH-L3 activity reduced β-catenin protein levels. The interaction between UCH-L3 and β-catenin proteins was confirmed, and it reduced the ubiquitination of β-catenin. Our results suggest that UCH-L3 induces the stabilization of β-catenin, which is required to promote stemness during autophagy activation. Also, UCH-L3 expression was regulated by c-Fos, and the levels of c-Fos increased in response to autophagy activation. In summary, our findings suggest that the inhibition of UCH-L3 during nutrient deprivation could suppress stress resistance of GCSCs and increase the survival rates of gastric cancer patients.

Development and Validation of the Custom Human cDNA Microarray (KISTCHIP-400) for Monitoring Expression of Genes involved in Hormone Disruption

  • Kim, Youn-Jung;Chang, Suk-Tai;Yun, Hye-Jung;Jeon, Hee-Kyung;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.180-180
    • /
    • 2003
  • Transcript profiling is a particularly valuable tool in the field of steroid receptor biology, as these receptors are ligand-activated transcription factors and therefore exert their initial effects through altering gene expression in responsive cells. Also, an increased awareness of endocrine disrupting chemicals (EBCs) and their potential to affect wildlife and humans has produced a demand for practical screening methods to identify endocrine activity. Here we developed an in-house cDNA microarray, named KISTCHIP-400, with 401 clones, hormone related genes, factors, and ESTs, based on public database and research papers. Theses clones contained estrogen, androgen, thyroid hormone St receptors, sex hormone signal transduction & regulation, c-fos, c-myc, ps2 gene, metabolism related genes etc. And to validate the KISTCHIP-400, we investigated gene expression profiles with reference hormones, 10$\^$-8/ M 17be1a-estradiol, 10$\^$-7/ M testosterone, 10$\^$-7/ M progesterone, and thyroxin in MCF-7 cell line. Although it is in first step of validation, low doses and combinations of EDCs need to be tested. Our preliminary results that indicate the developed microarray may be a useful laboratory tool for screening EDCs and elucidating endocrine disrupting mechanism.

  • PDF

Activities of E6 Protein of Human Papillomavirus 16 Asian Variant on miR-21 Up-regulation and Expression of Human Immune Response Genes

  • Chopjitt, Peechanika;Pientong, Chamsai;Bumrungthai, Sureewan;Kongyingyoes, Bunkerd;Ekalaksananan, Tipaya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3961-3968
    • /
    • 2015
  • Background: Variants of human papillomavirus (HPV) show more oncogenicity than do prototypes. The HPV16 Asian variant (HPV16As) plays a major role in cervical cancer of Asian populations. Some amino acid changes in the E6 protein of HPV16 variants affect E6 functions such as p53 interaction and host immune surveillance. This study aimed to investigate activities of HPV16As E6 protein on modulation of expression of miRNA-21 as well as interferon regulatory factors (IRFs) 1, 3, 7 and c-fos. Materials and Methods: Vectors expressing E6 protein of HPV16As (E6D25E) or HPV16 prototype (E6Pro) were constructed and transfected into C33A cells. HCK1T cells expressing E6D25E or E6Pro were established by transducing retrovirus-containing E6D25E or 16E6Pro. The E6AP-binding activity of E6 and proliferation of the transfected C33A cells were determined. MiR-21 and mRNA of interesting genes were detected in the transfected C33A cells and/or the HCK1T cells, with or without treatment by culture medium from HeLa cells (HeLa-CM). Results: E6D25E showed binding activity with E6AP similar to that of E6Pro. Interestingly, E6D25E showed a higher activity of miR-21 induction than did E6Pro in C33A cells expressing E6 protein. This result was similar to the HCK1T cells expressing E6 protein, with HeLa-CM treatment. The miR-21 up-regulation significantly corresponded to its target expression. Different levels of expression of IRFs were also observed in the HCK1T cells expressing E6 protein. Interestingly, when treated with HeLa-CM, IRFs 1, 3 and 7 as well as c-fos were significantly suppressed in the HCK1T cells expressing E6D25E, whereas those in the HCK1T cells expressing E6Pro were induced. A similar situation was seen for IFN-${\alpha}$ and IFN-${\beta}$. Conclusions: E6D25E of the HPV16As variant differed from the E6 prototype in its activities on epigenetic modulation and immune surveillance and this might be a key factor for the important role of this variant in cervical cancer progression.