• Title/Summary/Keyword: C*-algebra

Search Result 322, Processing Time 0.024 seconds

THE WOVEN FRAME OF MULTIPLIERS IN HILBERT C* -MODULES

  • Irani, Mona Naroei;Nazari, Akbar
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.257-266
    • /
    • 2021
  • In this paper, by using the sequence of adjointable operators from C*-algebra 𝓐 into Hilbert 𝓐-module E, the woven frames of multipliers in Hilbert C*-modules are introduced. Meanwhile, we study the effect of operators on these frames and, also we construct the new woven frame of multipliers in Hilbert 𝓐-module 𝓐. Finally, compositions of woven frames of multipliers in Hilbert C*-modules are studied.

ISOMORPHISMS AND DERIVATIONS IN C*-TERNARY ALGEBRAS

  • An, Jong Su;Park, Chunkil
    • Korean Journal of Mathematics
    • /
    • v.17 no.1
    • /
    • pp.83-90
    • /
    • 2009
  • In this paper, we investigate isomorphisms between $C^*$-ternary algebras and derivations on $C^*$-ternary algebras associated with the Cauchy-Jensen functional equation $$2f(\frac{x+y}{2}+z)=f(x)+f(y)+2f(z)$$, which was introduced and investigated by Baak in [2].

  • PDF

APPROXIMATE BI-HOMOMORPHISMS AND BI-DERIVATIONS IN C*-TERNARY ALGEBRAS

  • Bae, Jae-Hyeong;Park, Won-Gil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.195-209
    • /
    • 2010
  • In this paper, we prove the generalized Hyers-Ulam stability of bi-homomorphisms in $C^*$-ternary algebras and of bi-derivations on $C^*$-ternary algebras for the following bi-additive functional equation f(x + y, z - w) + f(x - y, z + w) = 2f(x, z) - 2f(y, w). This is applied to investigate bi-isomorphisms between $C^*$-ternary algebras.

INVERTIBLE INTERPOLATION ON AX = Y IN A TRIDIAGONAL ALGEBRA ALG𝓛

  • JO, YOUNG SOO;KANG, JOO HO;PARK, DONG WAN
    • Honam Mathematical Journal
    • /
    • v.27 no.2
    • /
    • pp.243-250
    • /
    • 2005
  • Given operators X and Y acting on a separable Hilbert space ${\mathcal{H}}$, an interpolating operator is a bounded operator A such that AX = Y. We show the following: Let ${\mathcal{L}}$ be a subspace lattice acting on a separable complex Hilbert space ${\mathcal{H}}$. and let $X=(x_{ij})$ and $Y=(y_{ij})$ be operators acting on ${\mathcal{H}}$. Then the following are equivalent: (1) There exists an invertible operator $A=(a_{ij})$ in $Alg{\mathcal{L}}$ such that AX = Y. (2) There exist bounded sequences {${\alpha}_n$} and {${\beta}_n$} in ${\mathbb{C}}$ such that $${\alpha}_{2k-1}{\neq}0,\;{\beta}_{2k-1}=\frac{1}{{\alpha}_{2k-1}},\;{\beta}_{2k}=-\frac{{\alpha}_{2k}}{{\alpha}_{2k-1}{\alpha}_{2k+1}}$$ and $$y_{i1}={\alpha}_1x_{i1}+{\alpha}_2x_{i2}$$ $$y_{i\;2k}={\alpha}_{4k-1}x_{i\;2k}$$ $$y_{i\;2k+1}={\alpha}_{4k}x_{i\;2k}+{\alpha}_{4k+1}x_{i\;2k+1}+{\alpha}_{4k+2}x_{i\;2k+2}$$ for $$k{\in}N$$.

  • PDF

INVERTIBLE INTERPOLATION ON Ax = y IN A TRIDIAGONAL ALGEBRA ALGℒ

  • Kwak, Sung-Kon;Kang, Joo-Ho
    • Honam Mathematical Journal
    • /
    • v.33 no.1
    • /
    • pp.115-120
    • /
    • 2011
  • Given vectors x and y in a separable complex Hilbert space $\cal{H}$, an interpolating operator is a bounded operator A such that Ax = y. We show the following : Let Alg$\cal{L}$ be a tridiagonal algebra on a separable complex Hilbert space H and let x = ($x_i$) and y = ($y_i$) be vectors in H. Then the following are equivalent: (1) There exists an invertible operator A = ($a_{kj}$) in Alg$\cal{L}$ such that Ax = y. (2) There exist bounded sequences $\{{\alpha}_n\}$ and $\{{{\beta}}_n\}$ in $\mathbb{C}$ such that for all $k\in\mathbb{N}$, ${\alpha}_{2k-1}\neq0,\;{\beta}_{2k-1}=\frac{1}{{\alpha}_{2k-1}},\;{\beta}_{2k}=\frac{\alpha_{2k}}{{\alpha}_{2k-1}\alpha_{2k+1}}$ and $$y_1={\alpha}_1x_1+{\alpha}_2x_2$$ $$y_{2k}={\alpha}_{4k-1}x_{2k}$$ $$y_{2k+1}={\alpha}_{4k}x_{2k}+{\alpha}_{4k+1}x_{2k+1}+{\alpha}_{4k+2}x_{2k+2}$$.

The structure conformal vector fields on a sasakian manifold II

  • Hyun, Jong-Ik
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.3
    • /
    • pp.661-679
    • /
    • 1995
  • The concept of the structure conformal vector field C on a Sasakian manifold M is defined. The existence of such a C on M is determined by an exterior differential system in involution. In this case M is a foliate manifold and the vector field C enjoys the property to be exterior concurrent. This allows to prove some interesting properties of the Ricci tensor and Obata's theorem concerning isometries to a sphere. Different properties of the conformal Lie algebra induced by C are also discussed.

  • PDF

ON AUTOMORPHISMS IN PRIME RINGS WITH APPLICATIONS

  • Raza, Mohd Arif
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.641-650
    • /
    • 2021
  • The notions of skew-commuting/commuting/semi-commuting/skew-centralizing/semi-centralizing mappings play an important role in ring theory. ${\mathfrak{C}}^*$-algebras with these properties have been studied considerably less and the existing results are motivating the researchers. This article elaborates the structure of prime rings and ${\mathfrak{C}}^*$-algebras satisfying certain functional identities involving automorphisms.

Generalized Fourier-Feynman Transform of Bounded Cylinder Functions on the Function Space Ca,b[0, T]

  • Jae Gil Choi
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.2
    • /
    • pp.219-233
    • /
    • 2024
  • In this paper, we study the generalized Fourier-Feynman transform (GFFT) for functions on the general Wiener space Ca,b[0, T]. We establish an explicit evaluation formula for the analytic GFFT of bounded cylinder functions on Ca,b[0, T]. We start by examining certain cylinder functions which belong in a Banach algebra of bounded functions on Ca,b[0, T]. We then obtain an explicit formula for the analytic GFFT of the bounded cylinder functions.