• Title/Summary/Keyword: C*-algebra

Search Result 322, Processing Time 0.024 seconds

ON MULTIPLIER WEIGHTED-SPACE OF SEQUENCES

  • Bouchikhi, Lahcen;El Kinani, Abdellah
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1159-1170
    • /
    • 2020
  • We consider the weighted spaces ℓp(𝕊, 𝜑) and ℓp(𝕊, 𝜓) for 1 < p < +∞, where 𝜑 and 𝜓 are weights on 𝕊 (= ℕ or ℤ). We obtain a sufficient condition for ℓp(𝕊, 𝜓) to be multiplier weighted-space of ℓp(𝕊, 𝜑) and ℓp(𝕊, 𝜓). Our condition characterizes the last multiplier weighted-space in the case where 𝕊 = ℤ. As a consequence, in the particular case where 𝜓 = 𝜑, the weighted space ℓp(ℤ,𝜓) is a convolutive algebra.

Construction of Semi-Algebra Low Density Parity Check Codes for Parallel Array Processing (병렬 어레이 프로세싱을 위한 반집합 대수 LDPC 부호의 구성)

  • Lee Kwang-jae;Lee Moon-ho;Lee Dong-min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1C
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, we present a novel LDPC code construction called as semi-algebra low density parity check(LDPC) codes which is one kind of deterministic LDPC code based on dual-diagonal sub-matrix. The constructing method results in a class of high rate LDPC codes. Codes in this class have a large girth and good minimum distances. Furthermore, they can be implemented by simple parallel array architecture using cyclic shift register and perform well with the iterative decoding.

${\mathfrak{A}}$-GENERATORS FOR THE POLYNOMIAL ALGEBRA OF FIVE VARIABLES IN DEGREE 5(2t - 1) + 6 · 2t

  • Phuc, Dang Vo
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.371-399
    • /
    • 2020
  • Let Ps := 𝔽2[x1, x2, …, xs] = ⊕n⩾0(Ps)n be the polynomial algebra viewed as a graded left module over the mod 2 Steenrod algebra, ${\mathfrak{A}}$. The grading is by the degree of the homogeneous terms (Ps)n of degree n in the variables x1, x2, …, xs of grading 1. We are interested in the hit problem, set up by F. P. Peterson, of finding a minimal system of generators for ${\mathfrak{A}}$-module Ps. Equivalently, we want to find a basis for the 𝔽2-graded vector space ${\mathbb{F}}_2{\otimes}_{\mathfrak{A}}$ Ps. In this paper, we study the hit problem in the case s = 5 and the degree n = 5(2t - 1) + 6 · 2t with t an arbitrary positive integer.

HILBERT-SCHMIDT INTERPOLATION ON Ax = y IN A TRIDIAGONAL ALGEBRA ALGL

  • Jo, Young-Soo;Kang, Joo-Ho
    • The Pure and Applied Mathematics
    • /
    • v.11 no.2
    • /
    • pp.167-173
    • /
    • 2004
  • Given vectors x and y in a separable Hilbert space $\cal H$, an interpolating operator is a bounded operator A such that Ax = y. In this article, we investigate Hilbert-Schmidt interpolation problems for vectors in a tridiagonal algebra. We show the following: Let $\cal L$ be a subspace lattice acting on a separable complex Hilbert space $\cal H$ and let x = ($x_{i}$) and y = ($y_{i}$) be vectors in $\cal H$. Then the following are equivalent; (1) There exists a Hilbert-Schmidt operator A = ($a_{ij}$ in Alg$\cal L$ such that Ax = y. (2) There is a bounded sequence {$a_n$ in C such that ${\sum^{\infty}}_{n=1}\mid\alpha_n\mid^2 < \infty$ and $y_1 = \alpha_1x_1 + \alpha_2x_2$ ... $y_{2k} =\alpha_{4k-1}x_{2k}$ $y_{2k=1} = \alpha_{4kx2k} + \alpha_{4k+1}x_{2k+1} + \alpha_{4k+1}x_{2k+2}$ for K $\epsilon$ N.

  • PDF

HILBERT-SCHMIDT INTERPOLATION ON AX=Y IN A TRIDIAGONAL ALGEBRA ALG${\pounds}$

  • Kang, Joo-Ho
    • The Pure and Applied Mathematics
    • /
    • v.15 no.4
    • /
    • pp.401-406
    • /
    • 2008
  • Given operators X and Y acting on a separable complex Hilbert space H, an interpolating operator is a bounded operator A such that AX=Y. In this article, we investigate Hilbert-Schmidt interpolation problems for operators in a tridiagonal algebra and we get the following: Let ${\pounds}$ be a subspace lattice acting on a separable complex Hilbert space H and let X=$(x_{ij})$ and Y=$(y_{ij})$ be operators acting on H. Then the following are equivalent: (1) There exists a Hilbert-Schmidt operator $A=(a_{ij})$ in Alg${\pounds}$ such that AX=Y. (2) There is a bounded sequence $\{{\alpha}_n\}$ in $\mathbb{C}$ such that ${\sum}_{n=1}^{\infty}|{\alpha}_n|^2<{\infty}$ and $$y1_i={\alpha}_1x_{1i}+{\alpha}_2x_{2i}$$ $$y2k_i={\alpha}_{4k-1}x_2k_i$$ $$y{2k+1}_i={\alpha}_{4k}x_{2k}_i+{\alpha}_{4k+1}x_{2k+1}_i+{\alpha}_{4k+2}x_{2k+2}_i\;for\;all\;i,\;k\;\mathbb{N}$$.

  • PDF

Exponential rank of extensions of $C^*$-algebras

  • Jeong, Ja-A;Park, Gie-Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.395-401
    • /
    • 1997
  • We show that if I is an ideal of a $C^*$-algebra A such that the unitary group of I is connected then cer(A) $\leq$ cer(I) + cer(A/I), where cer(A) denotes the $C^*$-exponential rank of A.

  • PDF

Stable Rank of Group C*-algebras of Some Disconnected Lie Groups

  • Sudo, Takahiro
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.2
    • /
    • pp.203-219
    • /
    • 2007
  • We estimate the stable rank and connected stable rank of group $C^*$-algebra of certain disconnected solvable Lie groups such as semi-direct products of connected solvable Lie groups by the integers.

  • PDF