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On the Extension of a Completely Positive
Map on C*-Algebra

By An-Hyun Kim

I. Introduction.

In (1), Arveson proved that if § is a normed closed selfadjoint subspace of a
C*—algebra A with unit and the unit ] €A and ¢ is a completely positive map
defined on S, then ¢ has a completely positive extension to A, We wish to prove
Arveson's theorem in a form which can be applied to algebras of unbounded
operators. In this case the unit I is no longer an interior point of the cone of
positive elements and the topological structure associated with a C*- algebra
is no longer available.

2. Completely positive Map.

Suppose X is a complex vector space with a conjugate linear involution z——
x* with the properties :

(1) (ax+y) * = ax*+y*
(2) x**=x,
for all x, y€X and complex numbers a.
We denote by M(X) the space of all finite matrices over X,
Each eclement {z,}EM(X) is an array x,€X for i,j=1,2, with z,# 0 for
only finitely many pairs of indices.
We define *— operation on M(X) by the relation
{x, b=y t il y,=al,
for all i, j=1, 2,
we denote by M(X), the hermition elements of M(X), those elements such that
b= Az b
DEFINITION 2.1, We say a cone @ in M (X), is admissible if
(1)Q is a cone in that if {x,}, {y,' €Q and A =0, then
Azt ptyst €Q.
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2)If {x, 3 €EQ and {a, . i,j=1,2, b is an array of complex numbers such
that @,,#0 for only finitely many pairs (i,j) of indices and

yu:_zamabxﬂ, then {yu}EQ-

DEFINITION 2. 2. Suppose @ is an adimssible cone in M(X), and K is a
complex vector space. A completely positive (with respect to Q) map ¢ of X
on K is a linear map ¢ of X into B(K) such that if {x,,} €Q then

TUN $e) | £y 0 for all K, i=1,2,
If Q is an admissible cone in M(X)r, we say an element z=2'€Xis in Q(2€Q)
if the matrix {x6,0,,} €Q

DEFINITION 2.3, A symmetric (i.e, x&M implics x"&M) subspace M of X
is said to be cofinal in X with respect to an admissible cone @ in M(X) if
for every x*=zx& X, there is a y*=yEM with y&Q and y—1€Q.

PROPOSITION 2.4, Suppose M is cofinal in X with respect to an admissible
cone Q@ in M(X),, then for every f{x,t €M(X), there is an clement {y,}EM
(M), with {y,,} €Q and {yt = ) €Q.

PROPOSITION 2.5, Suppose X is a real vector space and {xe€ X, ca€R
a& [t is a set of pairs of elements 2, € X and real numbers a, indexed by the
set [

Let S,={x€X 1 x=-FAx,, A=0,i=1,2 nand A a,< 1, n=1 -

V= {z€X! x:,ﬁ:/\,x"” A=20,i=1,2,n and :A a, -1, n=1 |
If 0 is an internal point of §,, then one and only one of the folling stateme-
nts is true .
{a) there exists a real linear functional F on X such that
Flz.) +a.20, for all e&l
by o0&V,

PROOF. If V is empty, then F{x)= 0 satisfics (a), and (b) is falsec.
We will assume that V|, is nor empty. Assume that both {a) and (b) are true.
Then from (b) we have Om,ﬁ"‘x“ with A =0 for i==1 2, - ,n and ’i"/\;a,ﬁ = -1
If Fisa reallinear functiona’l satistving ‘a), then Fx. )b a., > 0.

Hence, we have
SA(Fiz)+a,)=0, F(ZAx)>=-Fha 21,

Hence, F{O) > 1 which is a contradiction.
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Therefore, statements (a) and (b) can’t both be true.

Next suppose 0 is an internal point of 8§, and S, and V. are disjoint

Since S, and V, are convex sets one of which has an internal point, the separa-
tion theorem for convex sets assures us that there exists a nonzero linear fun-
ctional fon X and a real number ¢ such that flx) =c for all x€V, and f(x) < ¢
for all x&€S,. Since 0 is an internal point of § and fis nonzero, it follows
that ¢ >0,

Let F(x)=c¢™ flx) for all x€X. then F satisfies (a). Hence, if (al is false, S,
and V. are not disjoint and there is an x€ X which lies in both S, and Vi e,

x= ——.i.,/\‘ x, I‘,Z.‘A:x’

with 4, A)=2 0 for i=1, - Lom = e m and

ér\,am= 8,<1, g'l/\}aa,w 8,<~-1.
We have 8=~ (8,+4+6,) > 0. then we have
0=0"% 4z, +0 " Thx,
and €A, =20, 874,20 for i=1, - nand j=1, m and Hence, 0€V,,
Hence, if (a) is false, (b) is true,
and this completes the proof of the proposition. (Q. E. D)

3. Main Theorem.

PROPOSITION 3.1. Suppose M is a symmetric subspace of X which is cofinal
in X with respect to an admissible cone @ in M(X), and ¢ is a completely pos-
itive map of M on K.

Suppose x*=z,EX and x, M. Let M’ be the span of M and x,. Then there ex-
ists a completely positive map ¢ of M’ on K which extends ¢.

PROOF. Suppose the hypotheses of the proposition are satfied.

In order to specify an extension ¢’ of ¢, it is sufficient to specify ¢ (x.).

A completely positive extension ¢’ exists if and only if there is a bilinear form

¢’ (x,) such that

(8) wereer Uz;'lu ¢ (x) | f) + Gl ¢z | f0=20
for all fE€K, complex number a,=a, x,=al&€M for i j=1 " such . that

{at/xo+xu} €Q.
Let K%K be the linear space of all expression ymz_ﬁr%f)g(

with f, g.€K for i=1,- nand n=1,
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On K&K, we have the relations

(af+J') Rg= a(fOg) +F'&qg.

J®(ag+g') = alfig) + iy’
We define a * — operation on K%K by the relation

if y=é’f,®g,, then y*=$’§, Sf..
Let Y be the vector‘space of all yekziﬁK such that y=y*.
We asserts that each element y& Y can be expressed in the form

y=UZ"a,, (F.®f,), where a,=a,,
Each element C&B(K) defines a linear functional F. on K ®K by the relation
F.(y) =,Zi."l(f, | Clg), where y“tZ’ Jixg..
If C* is the hermition adjoint of CEB(K) (i.e, (f| C*| ¢)={g | C| f for all
f, 9€K) we have F. (y)=F.(y*).
It follows that each hermition C& B(K) defines a real linear functional on Y.
In terms of the real vector space Y, the question of whether there is a hermi-
tion form¢’(x,) satisfying condiction ,(a) is equivalent to the question of whether
there exists a real linear functional F on Y such that

() Flg)+a,2 0, for all y=Xa, (,%f) €Y, a=2 (1] $(x) | 1)

where {ayx,+ 2, €Q and n=1, 2, -+ .
Let S, and V, be as in proposition 2. 5. Then it follows that 0 is an internal
point of S, and from proposition 2.5 (a’) has a solution or 0 €V .

Suppose (a’) has no solution and, therefore, 0 &€V,

k) N )
Since 0 €V,, there are y,wuzv') al(k)  Jofse k=1, n, {ZFteM(M),
with {a(k) ,2,+2F}EQ so that Z’R,‘y,m 0
n mix) !

and 3 57 A.(f..| $(x) | fo=~1.
Let @ = A’kaha(k> uoand  xp0= A,(?mxi'f’,

Then combining the pair of indices (ik) into a single index i and, (JI) into j, we

have y=Xa, ofi=X aufa®fi= 0,
[Aah] ikl
tayz,+ xt €Q with 2, =2LEM for i, j=1, . m and
EU b =1
Since y= 0, there are g,€K for i=1, o7 (with r=<m) and a matrix {r,i=
'1_ ...... m, j=1, " rt such that
ﬁm;ru g, for i=1,-- , m and
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(r*ar) , =23 7o, ro=0 for all i j=1, m.
K=
Now from the properties of an admissible cone, we have
{T*} {auxo+xu> <T} = {Z,;} EQ with zumfl: Fr X Tuy.
CRES]

Since P*ay= 0, the {a,x}! terms drop out,

Therefore, we have
F (ol $lan) | 9 =Z (rug | #ln) | 100)
=2 (Erugl $la) | Zrug)
=5 Gl $a) |
P AR TEPRPAEESY

brpe

But since {z,} €Q, this contradicts the completely positivity of ¢ on M and we

have reached a contradiction.

Hence, inequality (a’) has a solution. (Q. E. D)
THEOREM 3. 2. Suppose M is a symmetric subspace of X which is cofinal in

X with respect to an admissible cone Q in M(X), and ¢ is a completely positive

map of M on K.

Then ¢ has a completely positive extension to X,

PROOF. The proof follows immediately from an application of Zorn’s lemma
to the preceding proposition 3, 1.
Let P be the collection of all ordered pairs (M. ¢’), where M’ is a subspace
of X which contains M and where ¢’ is a extension of ¢ to M’.
Partially order P by declaring (M’, ¢") < (M” ¢”) to mean that M'CM” and
$”(x) = ¢’ (x) for all zeM’.
P is not empty since it contains (M, #) and so the Zorn’s lemma asserts the
existence of a maximal totally ordered subcollection {1 of P.
Let 3 be the collection of all M’ such that (M’ ¢') €Q,
Then 2, is totally ordered by set inclusion, and the union M of all members
of 3, is a subspace of X.
If x€M, then x€M’ for some M’ €Y. If M were a proper subspace of X, the
proposition 3,1 would give us a further extension, and this would contradict

the maximality of 2,. {Q. E. D)
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