On the Extension of a Completely Positive Map on C^* -Algebra

By An-Hyun Kim

1. Introduction.

In (1), Arveson proved that if S is a normed closed selfadjoint subspace of a C^* -algebra A with unit and the unit $I \in A$ and $\mathscr C$ is a completely positive map defined on S, then ϕ has a completely positive extension to A. We wish to prove Arveson's theorem in a form which can be applied to algebras of unbounded operators. In this case the unit I is no longer an interior point of the cone of positive elements and the topological structure associated with a C^* -algebra is no longer available.

2. Completely positive Map.

Suppose X is a complex vector space with a conjugate linear involution $x \rightarrow x^*$ with the properties:

$$(1) (\alpha x + y) * = \widehat{\alpha} x * + y *$$

$$(2) x^{**} = x,$$

for all $x, y \in X$ and complex numbers α .

We denote by M(X) the space of all finite matrices over X.

Each element $\{x_{i,j}\} \in M(X)$ is an array $x_{i,j} \in X$ for $i, j = 1, 2, \dots$ with $x_{i,j} \neq 0$ for only finitely many pairs of indices.

We define *- operation on M(X) by the relation

$$\{x_{ij}\}^* = \{y_{ij}\}$$
 if $y_{ij} = x_{ij}^*$

for all $i, j=1, 2 \cdots$.

we denote by M(X), the hermition elements of M(X), those elements such that $\{x_{ij}\} = \{x_{ij}\}^*$.

DEFINITION 2.1. We say a cone Q in $M(X)_r$ is admissible if

(1) Q is a cone in that if $\{x_{ij}\}$, $\{y_{ij}\} \in Q$ and $\lambda, \mu \ge 0$, then $\lambda \{x_{ij}\} + \mu \{y_{ij}\} \in Q$.

(2) If $\{x_{ij}\} \in Q$ and $\{\alpha_{ij} : i, j = 1, 2, \dots\}$ is an array of complex numbers such that $\alpha_{ij} \neq 0$ for only finitely many pairs (i, j) of indices and

$$y_{ij} = \sum_{kl=1}^{\infty} \overline{\alpha}_{kl} \alpha_{lj} X_{kl}$$
, then $\{y_{ij}\} \in Q$.

DEFINITION 2.2. Suppose Q is an adimssible cone in $M(X)_{\tau}$ and K is a complex vector space. A completely positive (with respect to Q) map ϕ of X on K is a linear map ϕ of X into B(K) such that if $\{x_{ij}\} \in Q$ then

$$\sum_{i,j=1}^{\infty} \langle f_i \mid \phi(x_{ij}) \mid f_i \rangle \ge 0 \text{ for all } f_i \in K, i = 1, 2, \dots.$$

If Q is an admissible cone in $M(X)_{\tau}$, we say an element $x = x \in X$ is in $Q(x \in Q)$ if the matrix $\{x \delta_{ij} \delta_{ij}\} \in Q$

DEFINITION 2.3. A symmetric (i. e, $x \in M$ implies $x^* \in M$) subspace M of X is said to be cofinal in X with respect to an admissible cone Q in M(X) if for every $x^* = x \in X$, there is a $y^* = y \in M$ with $y \in Q$ and $y - x \in Q$.

PROPOSITION 2.4. Suppose M is cofinal in X with respect to an admissible cone Q in $M(X)_r$, then for every $\{x_{ij}\} \in M(X)_r$, there is an element $\{y_{ij}\} \in M(X)_r$ with $\{y_{ij}\} \in Q$ and $\{y_{ij}\} = \{x_{ij}\} \in Q$.

PROPOSITION 2.5. Suppose X is a real vector space and $\{x_{\alpha} \in X, a_{\alpha} \in R : \alpha \in I\}$ is a set of pairs of elements $x_{\alpha} \in X$ and real numbers a_{α} indexed by the set I.

Let
$$S_i = \{x \in X : x = -\sum_{i=1}^n \lambda_i x_{\sigma_i}, \lambda_i \ge 0, i = 1, 2, \dots, n \text{ and } \sum_{i=1}^n \lambda_i a_{\sigma_i} < 1, n = 1, \dots\}$$

$$V_i = \{x \in X : x = \sum_{i=1}^n \lambda_i x_{\sigma_i}, \lambda_i \ge 0, i = 1, 2, \dots, n \text{ and } \sum_{i=1}^n \lambda_i a_{\sigma_i} \le -1, n = 1, \dots\}$$

If 0 is an internal point of S_1 , then one and only one of the folling statements is true:

- (a) there exists a real linear functional F on X such that $F(x_n) + a_n \ge 0$, for all $\alpha \in I$.
- (b) $0 \in V_{i}$

PROOF. If V_i is empty, then F(x)=0 satisfies (a), and (b) is false. We will assume that V_i is not empty. Assume that both (a) and (b) are true. Then from (b) we have $0=\sum_{i=1}^n \lambda_i x_{a_i}$ with $\lambda_i \ge 0$ for $i=1,2,\cdots,n$ and $\sum_{i=1}^n \lambda_i a_{a_i} \le -1$. If F is a real linear functional satisfying (a), then $F(x_{a_i})+a_{a_i}\ge 0$. Hence, we have

$$\sum_{i=1}^{n} \lambda_{i} \left(F\left(\mathbf{x}_{\alpha_{i}} \right) + \mathbf{a}_{\alpha_{i}} \right) \geq 0, \quad F\left(\sum_{i=1}^{n} \lambda_{i} |\mathbf{x}_{\alpha_{i}}| \right) \geq - \sum_{i=1}^{n} \lambda_{i} |\mathbf{a}_{\alpha_{i}}| \geq 1.$$

Hence, $F(0) \ge 1$ which is a contradiction.

Therefore, statements (a) and (b) can't both be true.

Next suppose 0 is an internal point of S_i , and S_i and V_i are disjoint.

Since S_+ and V_+ are convex sets one of which has an internal point, the separation theorem for convex sets assures us that there exists a nonzero linear functional f on X and a real number c such that $f(x) \ge c$ for all $x \in V_+$ and f(x) < c for all $x \in S_+$. Since 0 is an internal point of S_+ and f is nonzero, it follows that c > 0.

with λ_i , $\lambda_j^1 \ge 0$ for $i=1, \dots, n, j=1, \dots, m$ and

$$\sum_{i=1}^n \lambda_i a_{a_i} = \delta_i < 1, \qquad \sum_{j=1}^n \lambda_j^1 a_{a_j} = \delta_i \le -1.$$

We have $\delta = -(\delta_i + \delta_i) > 0$. then we have

$$0 = \delta^{-1} \sum_{j=1}^{n} \lambda_j x_{\alpha_j} + \delta^{-1} \sum_{j=1}^{n} \lambda_j x_{\alpha_j}$$

and $\delta^{-i}\lambda_i \ge 0$, $\delta^{-i}\lambda_j \ge 0$ for $i=1,\dots n$ and $j=1,\dots m$ and Hence, $0 \in V$.

Hence, if (a) is false, (b) is true,
and this completes the proof of the proposition. (Q. E. D)

3. Main Theorem.

PROPOSITION 3.1. Suppose M is a symmetric subspace of X which is cofinal in X with respect to an admissible cone Q in M(X), and ϕ is a completely positive map of M on K.

Suppose $x_0^* = x_0 \in X$ and $x_0 \notin M$. Let M' be the span of M and x_0 . Then there exists a completely positive map ϕ' of M' on K which extends ϕ .

PROOF. Suppose the hypotheses of the proposition are satfied.

In order to specify an extension ϕ' of ϕ , it is sufficient to specify $\phi'(x_0)$.

A completely positive extension ϕ' exists if and only if there is a bilinear form $\phi'(x_o)$ such that

(a)
$$\cdots \sum_{i=1}^{\infty} \langle f_i \mid \phi'(x_i) \mid f_i \rangle + \langle f_i \mid \phi(x_{ij}) \mid f_i \rangle \geq 0$$

for all $f_i \in K$, complex number $\alpha_{ij} = \overline{\alpha}_{ji}$ $x_{ij} = x_{ji}^* \in M$ for $i, j = 1, \dots$ such that $\{\alpha_{ij}x_o + x_{ij}\} \in Q$.

Let $\overline{K} \otimes K$ be the linear space of all expression $y = \sum_{i=1}^{n} \overline{f_i} \otimes g_i$ with $f_i, g_i \in K$ for $i = 1, \dots, n$ and $n = 1, \dots$.

On $K \otimes K$, we have the relations

$$(\alpha \overline{f} + \overline{f'}) \otimes g = \alpha (\overline{f} \otimes g) + \overline{f'} \otimes g.$$

$$\overline{f} \otimes (\alpha g + g') = \alpha (\overline{f} \otimes g) + \overline{f} \otimes g'.$$

We define a *-operation on $K \otimes K$ by the relation

if
$$\mathbf{y} = \sum_{i=1}^{n} f_i \otimes g_i$$
, then $\mathbf{y}^* = \sum_{i=1}^{n} \tilde{g}_i \otimes f_i$.

Let Y be the vector space of all $y \in K \otimes K$ such that $y = y^*$.

We asserts that each element $y \in Y$ can be expressed in the form

$$y = \sum_{i=1}^{n} \alpha_{i,i} (f_i \otimes f_i)$$
, where $\alpha_{i,i} = \widehat{\alpha}_{j,i}$.

Each element $C \in B(K)$ defines a linear functional F_c on $\overline{K} \otimes K$ by the relation $F_c(y) = \sum_{i=1}^n \langle f_i \mid C \mid g_i \rangle$, where $y = \sum_{i=1}^n \langle f_i \otimes g_i \rangle$.

If C^* is the hermition adjoint of $C \in B(K)$ (i. e, $\langle f \mid C^* \mid g \rangle = \langle g \mid C \mid f \rangle$ for all $f, g \in K$) we have $F_{c_*}(y) = F_c(y^*)$.

It follows that each hermition $C \in B(K)$ defines a real linear functional on Y. In terms of the real vector space Y, the question of whether there is a hermition form $\phi'(x_0)$ satisfying condiction (a) is equivalent to the question of whether there exists a real linear functional F on Y such that

(a')
$$F(y_o) + a_o \ge 0$$
, for all $y_o = \sum_{ij=1}^n \alpha_{ij} (f_i \otimes f_j) \in Y$, $a_o = \sum_{ij=1}^n \langle f_i \mid \phi(x_{ij}) \mid f_j \rangle$ where $\{a_{ij}x_o + x_{ij}\} \in Q$ and $n = 1, 2, \dots$.

Let S, and V, be as in proposition 2.5. Then it follows that 0 is an internal point of S, and from proposition 2.5 (a') has a solution or $0 \in V$.

Suppose (a') has no solution and, therefore, $0 \in V_{i}$.

Since $0 \in V_i$, there are $y_k = \sum_{ij=1}^{n(k)} \alpha(k)_{ij} f_{ik} \otimes f_{ik}$, $k = 1, \dots, n$, $\{x_{ij}^{(k)}\} \in M(M)_i$, with $\{\alpha(k)_{ij} x_0 + x_{ij}^{(k)}\} \in Q$ so that $\sum_{i} \lambda_i y_i = 0$

and
$$\sum_{k=1}^{n} \sum_{l=1}^{n(k)} \lambda_{k} \langle f_{ik} \mid \phi(x_{il}^{(k)}) \mid f_{ik} \rangle \leq -1.$$

Let $\alpha_{(ik)(il)} = \lambda_x \delta_{kl} \alpha(k)_{il}$ and $x_{(ik)(il)} = \lambda_x \delta_{kl} x_{il}^{(k)}$.

Then combining the pair of indices (ik) into a single index i and, (jl) into j, we have $y = \sum_{i,j=1}^{n} \alpha_{i,j} f_{i,j} \otimes f_{j,j} = \sum_{i,j\neq i} \alpha_{(i,j)} f_{i,j} \otimes f_{j,j} = 0$.

 $\{\alpha_{ij}x_o + x_{ij}\} \in Q$ with $x_{ij} = x_{ij}^* \in M$ for $i, j = 1, \dots, m$ and

$$\sum_{i=1}^{m} \langle f_i \mid \phi(x_{ii}) \mid f_i \rangle \leq -1.$$

Since y=0, there are $g_i \in K$ for $i=1, \dots, r$ (with $r \leq m$) and a matrix $\{r_{ij}: i=1, \dots, m, j=1, \dots, r\}$ such that

$$f_i = \sum_{j=1}^r r_{ij} g_j$$
 for $i = 1, \dots, m$ and

$$(r^*\alpha r)_{ij} = \sum_{k=1}^n \bar{r}_{ki} \alpha_{ki} \quad r_{kj} = 0 \quad \text{for all } i, j = 1, \dots m.$$

Now from the properties of an admissible cone, we have

$$\{r^*\}$$
 $\{\alpha_{ij}x_0+x_{ij}\}$ $\{r\}=\{z_{ij}\}\in Q$ with $z_{ij}=\sum_{i=1}^n \bar{r}_{ki}x_{ki}r_{ij}$.

Since $\gamma^* \alpha \gamma = 0$, the $\{\alpha_{ij} x_0\}$ terms drop out,

Therefore, we have

$$\begin{split} \sum_{i,j=1}^{r} \langle g_i \mid \phi(z_{ij}) \mid g_j \rangle &= \sum_{i,k|i} \langle r_{\kappa i} g_i \mid \phi(x_{\kappa i}) \mid r_{ij} g_j \rangle \\ &= \sum_{k!=1}^{n} \langle \sum_{j=1}^{r} r_{\kappa i} g_i \mid \phi(x_{\kappa i}) \mid \sum_{j=1}^{r} r_{ij} g_j \rangle \\ &= \sum_{k!=1}^{n} \langle f_i \mid \phi(x_{ki}) \mid f_i \rangle \\ &= \sum_{k!=1}^{n} \langle f_i \mid \phi(x_{ij}) \mid f_j \rangle \leq -1. \end{split}$$

But since $\{z_u\} \in Q$, this contradicts the completely positivity of ϕ on M and we have reached a contradiction.

Hence, inequality (a') has a solution.

(Q. E. D)

THEOREM 3.2. Suppose M is a symmetric subspace of X which is cofinal in X with respect to an admissible cone Q in M(X), and ϕ is a completely positive map of M on K.

Then ϕ has a completely positive extension to X.

PROOF. The proof follows immediately from an application of Zorn's lemma to the preceding proposition 3, 1.

Let P be the collection of all ordered pairs (M', ϕ') , where M' is a subspace of X which contains M and where ϕ' is a extension of ϕ to M'.

Partially order P by declaring $(M', \phi') \le (M'', \phi'')$ to mean that $M' \subset M''$ and $\phi''(x) = \phi'(x)$ for all $x \in M'$.

P is not empty since it contains (M, ϕ) and so the Zorn's lemma asserts the existence of a maximal totally ordered subcollection Ω of P.

Let Σ be the collection of all M' such that $(M',\,\phi')\in\Omega$.

Then Σ is totally ordered by set inclusion, and the union \overline{M} of all members of Σ is a subspace of X.

If $x \in \overline{M}$, then $x \in M'$ for some $M' \in \Sigma$. If \overline{M} were a proper subspace of X, the proposition 3.1 would give us a further extension, and this would contradict the maximality of Σ . (Q. E. D)

References

- [1] William B. Arveson, Subalgebra of C*-algebra, Acta. Math. (1969)
- [2] N. Dunford and J.T. Schwarz, *Linear Operators*, I. Interscience, New York. (1958)

Chonnam National University