• Title/Summary/Keyword: C*-algebra

Search Result 322, Processing Time 0.028 seconds

POISSON BRACKETS DETERMINED BY JACOBIANS

  • Ahn, Jaehyun;Oh, Sei-Qwon;Park, Sujin
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.357-365
    • /
    • 2013
  • Fix $n-2$ elements $h_1,{\cdots},h_{n-2}$ of the quotient field B of the polynomial algebra $\mathbb{C}[x_1,x_2,{\cdots},x_n]$. It is proved that B is a Poisson algebra with Poisson bracket defined by $\{f,g\}=det(Jac(f,g,h_1,{\cdots},h_{n-2})$ for any $f,g{\in}B$, where det(Jac) is the determinant of a Jacobian matrix.

CLASSIFICATION ON ARITHMETIC FUNCTIONS AND CORRESPONDING FREE-MOMENT L-FUNCTIONS

  • Cho, Ilwoo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.717-734
    • /
    • 2015
  • In this paper, we provide a classification of arithmetic functions in terms of identically-free-distributedness, determined by a fixed prime. We show then such classifications are free from the choice of primes. In particular, we obtain that the algebra $A_p$ of equivalence classes under the quotient on A by the identically-free-distributedness is isomorphic to an algebra $\mathbb{C}^2$, having its multiplication $({\bullet});(t_1,t_2){\bullet}(s_1,s_2)=(t_1s_1,t_1s_2+t_2s_1)$.

A FAMILY OF QUANTUM MARKOV SEMIGROUPS

  • Ahn, Sung-Ki;Ko, Chul-Ki;Pyung, In-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.751-763
    • /
    • 2005
  • For a given gauge invariant state $\omega$ on the CAR algebra A isomorphic with the C$\ast$ -algebra of $2{\times}2$ complex matrices, we construct a family of quantum Markov semigroups on A which leave w invariant. By analyzing their generators, we decompose the algebra A into four eigenspaces of the semigroups and show some properties.

WEIGHTED COMPOSITION OPERATORS WHOSE RANGES CONTAIN THE DISK ALGEBRA II

  • Izuchi, Kei Ji;Izuchi, Kou Hei;Izuchi, Yuko
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.507-514
    • /
    • 2018
  • Let $\{{\varphi}_n\}_{n{\geq}1}$ be a sequence of analytic self-maps of ${\mathbb{D}}$. It is proved that if the union set of the ranges of the composition operators $C_{{\varphi}_n}$ on the weighted Bergman spaces contains the disk algebra, then ${\varphi}_k$ is an automorphism of ${\mathbb{D}}$ for some $k{\geq}1$.

Injective JW-algebras

  • Jamjoom, Fatmah Backer
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.2
    • /
    • pp.267-276
    • /
    • 2007
  • Injective JW-algebras are defined and are characterized by the existence of projections of norm 1 onto them. The relationship between the injectivity of a JW-algebra and the injectivity of its universal enveloping von Neumann algebra is established. The Jordan analgue of Theorem 3 of [3] is proved, that is, a JC-algebra A is nuclear if and only if its second dual $A^{**}$ is injective.

  • PDF

VECTOR GENERATORS OF THE REAL CLIFFORD ALGEBRA Cℓ0,n

  • Song, Youngkwon;Lee, Doohann
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.571-579
    • /
    • 2014
  • In this paper, we present new vector generators of a matrix subalgebra $L_{0,n}$, which is isomorphic to the Clifford algebra $C{\ell}_{0,n}$, and we obtain the matrix form of inverse of a vector in $L_{0,n}$. Moreover, we consider the solution of a linear equation $xg_2=g_2x$, where $g_2$ is a vector generator of $L_{0,n}$.

APPROXIMATE LINEAR MAPPING OF DERIVATION-TYPE ON BANACH ∗-ALGEBRA

  • Chang, Ick-Soon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.195-205
    • /
    • 2019
  • We consider additive mappings similar to derivations on Banach ${\ast}$-algebras and we will first study the conditions for such additive mappings on Banach ${\ast}$-algebras. Then we prove some theorems concerning approximate linear mappings of derivation-type on Banach ${\ast}$-algebras. As an application, approximate linear mappings of derivation-type on $C^{\ast}$-algebra are characterized.

ALGEBRAS OF GELFAND-CONTINUOUS FUNCTIONS INTO ARENS-MICHAEL ALGEBRAS

  • Oubbi, Lahbib
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.585-602
    • /
    • 2019
  • We characterize Gelfand-continuous functions from a Tychonoff space X into an Arens-Michael algebra A. Then we define several algebras of such functions, and investigate them as topological algebras. Finally, we provide a class of examples of (metrizable) commutative unital complete Arens-Michael algebras A and locally compact spaces X for which all these algebras differ from each other.

ON THE INDEX AND BIDERIVATIONS OF SIMPLE MALCEV ALGEBRAS

  • Yahya, Abdelaziz Ben;Boulmane, Said
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.385-397
    • /
    • 2022
  • Let (M, [ , ]) be a finite dimensional Malcev algebra over an algebraically closed field 𝔽 of characteristic 0. We first prove that, (M, [ , ]) (with [M, M] ≠ 0) is simple if and only if ind(M) = 1 (i.e., M admits a unique (up to a scalar multiple) invariant scalar product). Further, we characterize the form of skew-symmetric biderivations on simple Malcev algebras. In particular, we prove that the simple seven dimensional non-Lie Malcev algebra has no nontrivial skew-symmetric biderivation.