DOI QR코드

DOI QR Code

CLASSIFICATION ON ARITHMETIC FUNCTIONS AND CORRESPONDING FREE-MOMENT L-FUNCTIONS

  • Cho, Ilwoo (Department of Mathematics St. Ambrose University)
  • Received : 2013.02.21
  • Published : 2015.05.31

Abstract

In this paper, we provide a classification of arithmetic functions in terms of identically-free-distributedness, determined by a fixed prime. We show then such classifications are free from the choice of primes. In particular, we obtain that the algebra $A_p$ of equivalence classes under the quotient on A by the identically-free-distributedness is isomorphic to an algebra $\mathbb{C}^2$, having its multiplication $({\bullet});(t_1,t_2){\bullet}(s_1,s_2)=(t_1s_1,t_1s_2+t_2s_1)$.

Keywords

References

  1. T. M. Apostol, Modular Functions and Dirichilet Series in Number Theory, Springer-Verlag, 1990.
  2. D. Bump, Automorphic Forms and Representations, Cambridge Studies in Adv. Math., 55, Cambridge Univ. Press., 1996.
  3. I. Cho, Direct producted W*-probability spaces and corresponding amalgamated free stochastic integration, Bull. Korean Math. Soc. 44 (2007), no. 1, 131-150. https://doi.org/10.4134/BKMS.2007.44.1.131
  4. I. Cho, Group freeness and certain amalgamated freeness, J. Korean Math. Soc. 45 (2008), no. 3, 597-609. https://doi.org/10.4134/JKMS.2008.45.3.597
  5. I. Cho, On dynamical systems induced by the Adele ring, Global J. Sci. Frontier Research (2015), To appear.
  6. I. Cho, Free distributional data of arithmetic functions and corresponding generating functions determined by gaps of primes, Compl. Anal. Opre. Theo. 8 (2014), no. 2, 537-570. https://doi.org/10.1007/s11785-013-0311-9
  7. I. Cho, Dynamical systems on arithmatic functions determined by primes, Banach J. Math. Anal. 9 (2015), no. 9, 173-215.
  8. I. Cho and T. Gillespie, Arithmetic functions and free moments of certain free random variables, Preprint, 2012.
  9. I. Cho and P. E. T. Jorgensen, C*-subalgebras generated by partial isometries, J. Math. Phy., DOI://10.1063/1.3056588, 2009.
  10. I. Cho and P. E. T. Jorgensen, Free probability induced by electric resistance networks on energy Hilbert spaces, Opuscula Math. 31 (2011), no. 4, 549-598. https://doi.org/10.7494/OpMath.2011.31.4.549
  11. H. Davenport, Multiplicative Number Theory, 3-rd Ed., Grad. Texts in Math., vol. 74, Springer-Verlag, 2000.
  12. T. Gillespie, Superposition of zeroes of automorphic L-functions and functoriality, Ph.D. Thesis., The University of Iowa., 2011.
  13. T. Gillespie, Prime number theorems for Rankin-Selberg L-functions over number fields, Sci. China Math. 54 (2011), no. 1, 35-46. https://doi.org/10.1007/s11425-010-4137-x
  14. A. J. Hildebrand, Introduction to Analytic Number Theory, Lecture Notes, availble at http://www.math.uiuc.edu/˜hilderbr/ant, 2006.
  15. F. Radulescu, Random matrices, amalgamated free products and subfactors of the C*-algebra of a free group of nonsingular index, Invent. Math. 115 (1994), no. 2, 347-389. https://doi.org/10.1007/BF01231764
  16. R. Speicher, Combinatorial theory of the free product with amalgamation and operator- valued free probability theory, Mem. Amer. Math. Soc. 132 (1998), no. 627, x+88 pp.
  17. V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics, Ser. Soviet & East European Math., vol 1, World Scientific, 1994.
  18. D. Voiculescu, K. Dykemma, and A. Nica, Free Random Variables, CRM Monograph Series, vol 1., 1992.

Cited by

  1. Correction: An Application of Free Probability to Arithmetic Functions 2016, https://doi.org/10.1007/s11785-016-0604-x
  2. Free W*-Dynamical Systems From p-Adic Number Fields and the Euler Totient Function vol.3, pp.4, 2015, https://doi.org/10.3390/math3041095
  3. Free probability on $$W^{*}$$ W ∗ -dynamical systems determined by $$GL_{2}(\mathbb {Q} _{p})$$ G L 2 ( Q p ) : generalized Hecke algebras 2016, https://doi.org/10.1007/s40574-016-0111-z