• Title/Summary/Keyword: C*-algebra

Search Result 322, Processing Time 0.026 seconds

α-COMPLETELY POSITIVE MAPS ON LOCALLY C*-ALGEBRAS, KREIN MODULES AND RADON-NIKODÝM THEOREM

  • Heo, Jaeseong;Ji, Un Cig;Kim, Young Yi
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.61-80
    • /
    • 2013
  • In this paper, we study ${\alpha}$-completely positive maps between locally $C^*$-algebras. As a generalization of a completely positive map, an ${\alpha}$-completely positive map produces a Krein space with indefinite metric, which is useful for the study of massless or gauge fields. We construct a KSGNS type representation associated to an ${\alpha}$-completely positive map of a locally $C^*$-algebra on a Krein locally $C^*$-module. Using this construction, we establish the Radon-Nikod$\acute{y}$m type theorem for ${\alpha}$-completely positive maps on locally $C^*$-algebras. As an application, we study an extremal problem in the partially ordered cone of ${\alpha}$-completely positive maps on a locally $C^*$-algebra.

COMPACT INTERPOLATION ON AX = Y IN A TRIDIAGONAL ALGEBRA ALGL

  • Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.447-452
    • /
    • 2005
  • Given operators X and Y on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. In this article, we investigate compact interpolation problems for vectors in a tridiagonal algebra. Let L be a subspace lattice acting on a separable complex Hilbert space H and Alg L be a tridiagonal algebra. Let X = $(x_{ij})\;and\;Y\;=\;(y_{ij})$ be operators acting on H. Then the following are equivalent: (1) There exists a compact operator A = $(x_{ij})$ in AlgL such that AX = Y. (2) There is a sequence {$\alpha_n$} in $\mathbb{C}$ such that {$\alpha_n$} converges to zero and $$y_1\;_j=\alpha_1x_1\;_j+\alpha_2x_2\;_j\;y_{2k}\;_j=\alpha_{4k-1}x_{2k\;j}\;y_{2k+1\;j}=\alpha_{4k}x_{2k\;j}+\alpha_{4k+1}x_{2k+1\;j}+\alpha_{4k+2}x_{2k+2\;j\;for\;all\;k\;\epsilon\;\mathbb{N}$$.

NONCOMMUTATIVE CONTINUOUS FUNCTIONS

  • Don, Hadwin;Llolsten, Kaonga;Ben, Mathes
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.5
    • /
    • pp.789-830
    • /
    • 2003
  • By forming completions of families of noncommutative polynomials, we define a notion of noncommutative continuous function and locally bounded Borel function that give a noncommutative analogue of the functional calculus for elements of commutative $C^{*}$-algebras and von Neumann algebras. These notions give a precise meaning to $C^{*}$-algebras defined by generator and relations and we show how they relate to many parts of operator and operator algebra theory.

STABILITY OF (α, β, γ)-DERIVATIONS ON LIE C*-ALGEBRA ASSOCIATED TO A PEXIDERIZED QUADRATIC TYPE FUNCTIONAL EQUATION

  • Eghbali, Nasrin;Hazrati, Somayeh
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.101-113
    • /
    • 2016
  • In this article, we considered the stability of the following (${\alpha}$, ${\beta}$, ${\gamma}$)-derivation $${\alpha}D[x,y]={\beta}[D(x),y]+{\gamma}[x,D(y)]$$ and homomorphisms associated to the quadratic type functional equation $$f(kx+y)+f(kx+{\sigma}(y))=2kg(x)+2g(y),\;x,y{\in}A$$, where ${\sigma}$ is an involution of the Lie $C^*$-algebra A and k is a fixed positive integer. The Hyers-Ulam stability on unbounded domains is also studied. Applications of the results for the asymptotic behavior of the generalized quadratic functional equation are provided.

SPECTRAL DUALITIES OF MV-ALGEBRAS

  • Choe, Tae-Ho;Kim, Eun-Sup;Park, Young-Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.6
    • /
    • pp.1111-1120
    • /
    • 2005
  • Hong and Nel in [8] obtained a number of spectral dualities between a cartesian closed topological category X and a category of algebras of suitable type in X in accordance with the original formalism of Porst and Wischnewsky[12]. In this paper, there arises a dual adjointness S $\vdash$ C between the category X = Lim of limit spaces and that A of MV-algebras in X. We firstly show that the spectral duality: $S(A)^{op}{\simeq}C(X^{op})$ holds for the dualizing object K = I = [0,1] or K = 2 = {0, 1}. Secondly, we study a duality between the category of Tychonoff spaces and the category of semi-simple MV-algebras. Furthermore, it is shown that for any $X\;\in\;Lim\;(X\;{\neq}\;{\emptyset})\;C(X,\;I)$ is densely embedded into a cube $I^/H/$, where H is a set.

A NOTE ON THE UNITS OF MANTACI-REUTENAUER ALGEBRA

  • Arslan, Hasan;Can, Himmet
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1037-1049
    • /
    • 2018
  • In this paper, we have first presented the construction of the linear characters of a finite Coxeter group $G_n$ of type $B_n$ by lifting all linear characters of the quotient group $G_n/[G_n,G_n]$ of the commutator subgroup $[G_n,G_n]$. Also we show that the sets of distinguished coset representatives $D_A$ and $D_{A^{\prime}}$ for any two signed compositions A, A' of n which are $G_n$-conjugate to each other and for each conjugate class ${\mathcal{C}}_{\lambda}$ of $G_n$, where ${\lambda}{\in}\mathcal{BP}(n)$, the equality ${\mid}{\mathcal{C}}_{\lambda}{\cap}D_A{\mid}={\mid}{\mathcal{C}}_{\lambda}{\cap}D_{A^{\prime}}{\mid}$ holds. Finally, we have given the general structure of units of Mantaci-Reutenauer algebra.

GROUND STATES OF A COVARIANT SEMIGROUP C-ALGEBRA

  • Jang, Sun Young;Ahn, Jieun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.339-349
    • /
    • 2020
  • Let P ⋊ ℕx be a semidirect product of an additive semigroup P = {0, 2, 3, ⋯ } by a multiplicative positive natural numbers semigroup ℕx. We consider a covariant semigroup C-algebra 𝓣(P ⋊ ℕx) of the semigroup P ⋊ ℕx. We obtain the condition that a state on 𝓣(P ⋊ ℕx) can be a ground state of the natural C-dynamical system (𝓣(P ⋊ ℕx), ℝ, σ).

COMMON FIXED POINT RESULTS VIA F-CONTRACTION ON C* -ALGEBRA VALUED METRIC SPACES

  • Shivani Kukreti;Gopi Prasad;Ramesh Chandra Dimri
    • Korean Journal of Mathematics
    • /
    • v.31 no.4
    • /
    • pp.391-403
    • /
    • 2023
  • In this work, we establish common fixed point results by utilizing a variant of F-contraction in the framework of C*-algebra valued metric spaces. We utilize E.A. and C.L.R. property possessed by the mappings to prove common fixed point results in the same metric settings. To validate the applicability of these common fixed point results, we provide illustrative examples too.

HE NONCOMMUTATIVE ℓ1 - ℓ2 INEQUALITY FOR HILBERT C*-MODULES AND THE EXACT CONSTANT

  • Krishna, K. Mahesh;Johnson, P. Sam
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.249-259
    • /
    • 2022
  • Let 𝓐 be a unital C*-algebra. Then it follows that $\sum\limits_{i=1}^{n}(a_ia^*_i)^{\frac{1}{2}}{\leq}\sqrt{n}\(\sum\limits_{i=1}^{n}a_ia^*_i\)^{\frac{1}{2}}$, ∀n ∈ ℕ, ∀a1, …, an ∈ 𝓐. By modifications of arguments of Botelho-Andrade, Casazza, Cheng, and Tran given in 2019, for certain n-tuple x = (a1, …, an) ∈ 𝓐n, we give a method to compute a positive element cx in the C*-algebra 𝓐 such that the equality $$\sum\limits_{i=1}^{n}(a_ia^*_i)^{\frac{1}{2}}=c_x\sqrt{n}\(\sum\limits_{i=1}^{n}a_ia^*_i\)^{\frac{1}{2}}$$ holds. We give an application for the integral of Kasparov. We also derive a formula for the exact constant for the continuous ℓ1 - ℓ2 inequality.