• Title/Summary/Keyword: C/EBP ${\alpha}$

Search Result 177, Processing Time 0.021 seconds

Effects of steamed Polygonatum odoratum extract on inhibition of adipocyte differentiation and lowing lipid in 3T3-L1 adipocytes (증자 둥굴레 추출물의 3T3-L1 지방세포에서 분화억제 및 지질강하 효과)

  • Kang, Byung Tae;Choe, Won Kyung;Park, Dong Cheol;Kim, Jong Kuk;Park, Mora;Kim, Sung Ok;Kim, Mi Ryeo
    • The Korea Journal of Herbology
    • /
    • v.29 no.2
    • /
    • pp.15-21
    • /
    • 2014
  • Objectives : The purpose of this study was to investigate inhibitory effects of steamed Polygonatum odoratum extract (POE) on differentiation and adipogenesis in 3T3-L1 adipocytes. Methods : Polygonatum odoratum (P. odoratum) extract was extracted with ethyl acetate. Total phenolic and flavonoid contents in POE were measured for antioxidant activity. The spectrophotometric method was used to determine the DPPH and ABTS radical scavenging activity and ferric-reducing antioxidant potential (FRAP). MTT assay was examined for cell toxicity, oil red O staining was performed for intracelluar adipogenesis in differentiated 3T3-L1 adipocytes. Western blot analysis for measurement of CCAAT/enhancer-binding protein ${\alpha}$ ($C/EBP{\alpha}$), peroxisome proliferator-activated receptor${\gamma}$ ($PPAR{\gamma}$) and AMP-activated protein kinase (AMPK) expressions were performed. Results : The results revealed that POE has antioxidant activities. Contents of total polyphenolics and flavonoids were $50.83{\pm}1.52$ GAE mg/100g dry weight of POE and $17.05{\pm}2.47$ RE mg/100g dry weight of POE, respectively. DPPH radical scavenging activity, and FRAP in 10 mg/ml concentration were $92.1{\pm}0.6%$, $244.8{\pm}9.0{\mu}M$ Fe(II) and ABTS inhibition in 5 mg/ml concentration was $84.8{\pm}4.1%$. Treatment of POE in adipocytes inhibited the differentiation and adipogenesis of 3T3-L1 adipocytes compared to those of vehicle control. Additionally, protein expressions of $C/EBP{\alpha}$ and $PPAR{\gamma}$, major transcription factor for the adipogenic genes, were significantly decreased compared to those of vehicle control (p<0.05). Futhermore, phosphorylation of AMPK was increased in 3T3-L1 adipocytes treated with POE compared to that of vehicle control (p<0.05). Conclusions : we demonstrate that steamed P. odoratum extract (POE) has potentiating antioxidant activities, inhibits differentiation and lipid accumulation and also induces energy expenditure in adipocytes, which may contribute to antiobesity property.

Expressional Regulation of Replication Factor C in Adipocyte Differentiation (지방세포분화에서의 replication factor C 단백질의 발현조절)

  • Cho, Hyun-Kook;Kim, Hye-Young;Yu, Hyun-Jeong;Cheong, Jae-Hun
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.202-210
    • /
    • 2011
  • Adipocyte differentiation is an ordered multistep process requiring the sequential activation of several groups of adipogenic transcription factors, including CCAAT/enhancer-binding protein-$\alpha$ and peroxisome proliferator-activated receptor-$\gamma$, and coactivators. In previous reports, we identified that replication factor C 140 (RFC140) protein played a critical role in regulating adipocyte differentiation as a coactivator. Here, we show expressional regulation of RFC140 and small RFC subunit, RFC38, following characterization of gene promoter of RFC140 and RFC38. In addition, RFC140 increases PPAR$\gamma$-mediated gene activation, resulting from direct protein-protein interaction of RFC140 and PPAR$\gamma$. Taken together, these findings demonstrate that the regulated expression of RFC140 and RFC38 by specific adipocyte transcription factors is required for the adipocyte differentiation process.

Effects of CoCl2 on multi-lineage differentiation of C3H/10T1/2 mesenchymal stem cells

  • Yoo, Hong Il;Moon, Yeon Hee;Kim, Min Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.1
    • /
    • pp.53-62
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) in the bone marrow and other somatic tissues reside in an environment with relative low oxygen tension. Cobalt chloride ($CoCl_2$) can mimic hypoxic conditions through transcriptional changes of some genes including hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) and vascular endothelial growth factor (VEGF). This study evaluated the potential role of $CoCl_2$ preconditioning on multi-lineage differentiation of C3H/10T1/2, a murine MSC line to understand its possible molecular mechanisms in vitro. $CoCl_2$ treatment of MSCs markedly increased HIF-$1{\alpha}$ and VEGF mRNA, and protein expression of HIF-$1{\alpha}$. Temporary preconditioning of MSCs with $CoCl_2$ induced up-regulation of osteogenic markers including alkaline phosphatase, osteocalcin, and type I collagen during osteogenic differentiation, followed by enhanced mineralization. $CoCl_2$ also increased chondrogenic markers including aggrecan, sox9, and type II collagen, and promoted chondrocyte differentiation. $CoCl_2$ suppressed the expression of adipogenic markers including $PPAR{\gamma}$, aP2, and $C/EBP{\alpha}$, and inhibited adipogenesis. Temporary preconditioning with $CoCl_2$ could affect the multi-lineage differentiation of MSCs.

Anti-obesity Effects of Barley Sprout Young Leaf on 3T3-L1 Cells and High-fat Diet-induced Obese Mice (지방분화가 유도된 3T3-L1 세포와 고지방식이로 유도된 마우스에서 보리순 물추출물의 항비만 효과)

  • Kang, Byoung Man;Sim, Mi Ok;Kim, Min Suk;Yoo, Seung Jin;Yeo, Jun Hwan;Jung, Won Seok
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.6
    • /
    • pp.367-374
    • /
    • 2017
  • Background: An imbalance in energy intake and expenditure can cause obesity, which is a major risk factor for chronic diseases such as heart disease, type 2 diabetes, insulin resistance, cancers and hyperlipidemia. Methods and Results: In this study, we evaluated the anti-obesity effects of a water extract from the young leaves of barley sprout (BS) in 3T3-L1 cells and in high-fat diet (HFD)-induced obese mice (HF). Lipid accumulation measurement indicates that BS markedly inhibited adipogenesis by reducing lipid droplet production in a dose-dependent manner. Furthermore, the mRNA expression of adipogenic transcription factors peroxisome proliferator-activated receptor-${\gamma}$ and fatty acid synthetase, CCAAT/enhancer binding protein-${\alpha}$ and fatty acid binding protein 4 in 3T3-L1 cells was significantly inhibited by BS treatment. In an in vivo test, the BS-administered group of HFD-induced mice showed less body weight gain, and lower liver and epididymal white adipose tissue weights. The BS-treated mice showed decreased serum levels of leptin and lipids compared to untreated HFD mice and the levels of adiponectin and the HDL-cholesterol/total cholesterol ratio increased. These results indicate that BS inhibits body fat accumulation by reducing the mRNA expression of lipogenesis transcription factors and increasing serum adipokine concentration in in vitro and in vivo tests. Conclusions: BS reduced high fat diet-induced weight gain and had a positive effect on dyslipidemia.

Effects of Fractions from Benincasa hispida on Inhibition of Adipogenesis in 3T3-L1 Preadipocytes (동과 분획물이 3T3-L1 지방세포 분화 억제에 미치는 영향)

  • You, Yang-Hee;Jun, Woo-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.7
    • /
    • pp.895-900
    • /
    • 2012
  • The effects of three fractions, hexane (BHHH), chloroform (BHHC), and ethyl acetate (BHHE), from water extract of Benincasa hispida on the underlying mechanisms of adipogenesis were investigated in 3T3-L1 cells. Intracellular lipid droplets were stained with Oil Red O dye and quantified. Compared to control, lipid accumulation significantly decreased by 11% and 13% upon treatment with BHHC and BHHE, respectively at a concentration of 50 ${\mu}g/mL$. Intracellular triglyceride (TG) levels were also reduced by 21% and 16%, respectively, at the same concentration. To determine the mechanism behind the reductions in TG content and lipid accumulation, glycerol release and expression levels of adipogenic marker genes were measured. The levels of free glycerol released into culture medium increased by 13% and 17% upon treatment with BHHC and BHHE, respectively. In subsequent measurements using real-time polymerization chain reaction, the mRNA levels of $PPAR{\gamma}$, C/$EBP{\alpha}$, and leptin significantly decreased upon treatment with BHHE (45%, 67%, and 35%) in comparison with non-treated control. These results suggest that BHHE inhibits adipocyte differentiation by blocking $PPAR{\gamma}$, C/$EBP{\alpha}$, and leptin gene expression in 3T3-L1 cells, resulting in reduced lipid accumulation, increased glycerol release, and intracellular triglycerides.

Peanut sprout ethanol extract inhibits the adipocyte proliferation, differentiation, and matrix metalloproteinases activities in mouse fibroblast 3T3-L1 preadipocytes

  • Kim, Woo Kyoung;Kang, Nam E;Kim, Myung Hwan;Ha, Ae Wha
    • Nutrition Research and Practice
    • /
    • v.7 no.3
    • /
    • pp.160-165
    • /
    • 2013
  • 3T3-L1 preadipocyte were differentiated to adipocytes, and then treated with 0, 10, 20, and $40{\mu}g/mL$ of peanut sprout ethanol extract (PSEE). The main component of PSEE is resveratrol which contained 5.55 mg/mL of resveratrol. The MTT assay, Oil-Red O staining, glycerol-3-phosphate dehydrogenase (GPDH) activity, and the triglyceride concentration were determined in 3T3-L1 cells. MMP-2 and MMP-9 activities as well as mRNA expressions of C/EBP ${\beta}$ and C/EBP ${\alpha}$ were also investigated. As the concentration of PSEE in adipocytes increased, the cell proliferation was decreased in a dose-dependent manner from 4 days of incubation (P < 0.05). The GDPH activity (P < 0.05) and the triglyceride concentration (P < 0.05) were decreased as the PSEE treatment concentration increased. The mRNA expression of C/EBP${\beta}$ in 3T3-L1 cells was significantly low in groups of PSEE-treated, compared with control group (P < 0.05). The MMP-9 (P < 0.05) and MMP-2 (P < 0.05) activities were decreased in a dose-dependent manner as the PSEE concentration increased from $20{\mu}g/mL$. In conclusion, it was found that PSEE has an effect on restricting proliferation and differentiation of adipocytes.

Comparison of Anti-Adipogenesis Activity by Several Grape Extracts (포도 추출물로부터 C/EBP 전사인자 활성 비교)

  • Lee, Si-Rim;Park, Chul-Hong;Kuan, Eun-Young;Lu, Yan-Qing;Kim, Hong;Kim, Ki-Chan;Son, Hyeong-U;Lee, Hyun-Jin;Heo, Jin-Chul;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.18 no.1
    • /
    • pp.119-123
    • /
    • 2011
  • In order to compare what kinds of transcription factors are associated with the inhibition of preadipocyte cell proliferation, we prepared several grape extracts and tested the expression patterns by reverse transcription-polymerase chain reaction. As a result, 50% ethanol extract of Campbell early seed inhibited adipogenesis derived from the MDI solution. Extract of Campbell early seed was significantly inhibited lipid droplet formation and expression of molecular factors C/EBP-alpha and delta in 3T3-L1 cells. It is suggested that grape extracts of fractions would be a good candidate for the development of regional skin fat modulator.

The Effects of Daecheongryong-tang on Transcription Factors and Adipogenic Genes during 3T3-L1 Differentiation (대청룡탕이 지방세포 분화기전에 미치는 영향)

  • Lee, Jun-Moon;Cho, Sung-Woo;Kang, Kyung-Hwa;Lee, Seung-Yeon;Yu, Sun-Ae
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.92-105
    • /
    • 2010
  • Objectives: The purpose of this study is to investigate the effects of Daecheongryong-tang (DCRT) on the adipogenesis in 3T3-L1 preadipocytes. Methods: 3T3-L1 preadipocytes were differentiated with adipogenic reagents by incubating for 2 days in the absence or presence of DCRT ranging 0.25 and 2%. The effect of DCRT on adipogenesis was examined by Oil red O staining, and the protein, RNA, and RT-PCR were measured. Results: Our results showed that DCRT decreased the TG content by ORO staining. To elucidate the mechanism of the effects of DCRT on lowering TG content in 3T3-L1 adipocytes, we examined the DCRT modulate expressions of transcription factors to induce adipogenesis and adipogenic genes which is related to the regulation of accumulation of lipids. As a result, the expression of SREBP1, C/$EBP{\beta}$, C/$EBP{\delta}$, C/$EBP{\alpha}$, and $PPAR{\gamma}$ genes, which induce the adipose differentiation and adipose-specific aP2, adipsin, LPL, CD36, TGF-${\beta}$ and adiponectin genes which regulates fat formations, were decreased. In addition, DCRT reduced the expression of iNOS and IL-6 in 3T3-L1 adipocytes, resulting in inflammation. Conclusions: DCRT could regulate transcript factor related to induction of adipose differentiation, inhibit the accumulation of lipids and expression of the adipogenic genes.

Inhibitory Effect of Dihydroartemisinin, An Active Ingredient of Artemisia annua, on Lipid Accumulation in Differentiating 3T3-L1 Preadipocytes

  • Jang, Byeong-Churl
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Objectives: Artemisinin and its derivatives extracted from Artemisia annua, a Chinese herbal medicine, have variable biological effects due to structural differences. Up to date, the anti-obesity effect of dihydroartemisinin (DHA), a derivative of artemisinin, is unknown. The purpose of this study was to investigate the anti-adipogenic and lipolytic effects of DHA on 3T3-L1 preadipocytes. Methods: Oil Red O staining and AdipoRed assay were used to measure lipid accumulation and triglyceride (TG) content in 3T3-L1 cells, respectively. Cell count analysis was used to determine the cytotoxicity of 3T3-L1 cells. Western blot and real-time reverse transcription polymerase chain reaction analyses were used to analyze the expression of protein and mRNA in 3T3-L1 cells, respectively. Results: DHA at 5 μM markedly inhibited lipid accumulation and reduced TG content in differentiating 3T3-L1 cells with no cytotoxicity. Furthermore, DHA at 5 μM inhibited the expression of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A as well as the phosphorylation of signal transducer and activator of transcription-3 (STAT-3) in differentiating 3T3-L1 cells. Moreover, while DHA at 5 μM had no effect on the mRNA expression of adiponectin, it strongly suppressed that of leptin in differentiating 3T3-L1 cells. However, DHA at 5 μM had no lipolytic effect on differentiated 3T3-L1 cells, as assessed by no enhancement of glycerol release. Conclusions: These results demonstrate that DHA at 5 μM has a strong anti-adipogenic effect on differentiating 3T3-L1 cells through the reduced expression and phosphorylation of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3.

Antiadipogenic Effects of Red Radish (Raphanus sativus L.) Sprout Extract in 3T3-L1 Preadipocytes (적무 새싹 추출물의 3T3-L1 지방전구세포에서 지방합성 억제 효과)

  • Kim, Da Hye;Kim, Sang Jun;Jeong, Seung-Il;Cheon, Chun Jin;Kim, Seon-Young
    • Journal of Life Science
    • /
    • v.24 no.11
    • /
    • pp.1224-1230
    • /
    • 2014
  • The red radish (Raphanus sativus L.; RR) sprout is a plant of the cruciferous family. In this study, we elucidated the effect of the water extract of RR sprout (RRSE) against ${\alpha}$-amylase, ${\alpha}$-glucosidase, and pancreatic lipase enzyme activity and adipogenesis in 3T3-L1 preadipocytes. ${\alpha}$-amylase, ${\alpha}$-glucosidase, and pancreatic lipase enzyme activity was inhibited in a concentration-dependent manner by RRSE treatment. RSSE also abolished adipocyte differentiation and lipid and triglyceride accumulation without cytotoxicity in 3T3-L1 adipocytes. In addition, RRSE modulated the expression of the proteins related to adipogenic transcription factors: peroxisome proliferator-activated receptor (PPAR)${\gamma}$, sterol regulatory element-binding protein 1 (SREBP-1), and CCAT/enhancer binding protein (C/EBP)${\alpha}$. RRSE also suppressed expression of the proteins responsible for lipid synthesis, transport, and storage: adiponectin, fatty acid synthesis (FAS), perilipin, and fatty acid bind protein-4 (FABP4). This study showed that RRS treatment has the potential to inhibit obesity by controlling the expression of adipogenic transcription factors and adipogenic proteins.