• Title/Summary/Keyword: Byproduct gas

Search Result 47, Processing Time 0.024 seconds

The Development of the Real Time Optimal Byproduct Gas Supply System

  • Kim, Jeonghwan;Yi, Heui-Sok;Chonghum Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.69.6-69
    • /
    • 2002
  • The optimal byproduct gas supply system was developed for the optimal management of the byproduct gases in the iron and steel making process based on EXCEL environment. It supplies optimal byproduct gas distribution result as well as analysis including expected electricity generation, holder level change, amount of oil consumption, energy distribution to each boiler, and efficiency of energy resource. To reflect the changing environment of the plant such as maintenance, the system was developed to easily change the optimization model for changing configuration of the system. To verify the performance of the system , case studies for various situation was performed with the developed system, a...

  • PDF

Analysis on the Flow and the Byproduct Particle Trajectory of Roots Type Vacuum Pump (루츠식 진공 펌프의 유동 및 부산물 입자 궤적에 대한 해석)

  • Lee, Chan;Kil, Hyun-Gwon;Noh, Myung-Keun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.18-23
    • /
    • 2011
  • A CFD analysis method is developed and applied for investigating the gas flow and the byproduct particle trajectory in Roots type vacuum pump. The internal fluid flow and thermal fields between the rotors and the housing of vacuum pump are analyzed by using the dynamic mesh, the numerical methods for unsteady 2-D Navier-Stokes equation and the standard k-$\varepsilon$ turbulence model of the Fluent code. Coupled with the flow simulation results, the particle trajectory of the byproduct flowing into the pump with gas stream is analyzed by using discrete phase modeling technique. The CFD analysis results show the pressure, the velocity and the temperature distributions in pump change abruptly due to the rotation of rotors, and back flows are produced due to the strong reverse pressure gradients at rotor/rotor and rotor/housing clearances. The predicted byproduct particle trajectory results also show the particles impinge on the clearance surfaces between the housing and the rotor of pump and then may form the deposit layer causing the failure of pump.

The Status of Domestic Hydrogen Production, Consumption, and Distribution (국내 수소 생산, 소비 및 유통 현황)

  • Gim, Bong-Jin;Kim, Jong-Wook;Choi, Sang-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.391-399
    • /
    • 2005
  • This paper deals with the survey of domestic hydrogen production, consumption, and distribution. The amount of domestic hydrogen production and consumption has not been identified, and we survey the amount of domestic hydrogen production and consumption by industries. The hydrogen production industries are classified into the oil industry, the petrochemical industry, the chemical industry, and the other industry. In 2004, the amount of domestic hydrogen production was 972,601 ton, which corresponded to 1.9% of the global hydrogen production. The oil industry produced 635,683 ton(65.4%), the petrochemical industry produced 241,970 ton(24.9%), the chemical industry produced 66,250 ton(6.8%), the other industry produced 28,698 ton(2.9%). The hydrogen consumptions of corresponding industries were close to the hydrogen productions of industries except that of the other industry. Most hydrogen was used as non-energy for raw materials and hydrogen additions to the process. Only 122,743 ton(12.6%) of domestic hydrogen was used as energy for heating boilers. In 2004, 47,948 ton of domestic hydrogen was distributed. The market shares of pipeline, tube trailers and cylinders were 84.4% and 15.6%, respectively. The purity of 31,848 ton(66.4%) of the distributed hydrogen was 99.99%, and 16,100 ton(33.6%) was greater than or equal to 99.999%. Besides domestic hydrogen, we also identify the byproduct gases which contain hydrogen. The iron industry produces COG( coke oven gas), BFG(blast furnace gas), and LDG(Lintz Donawitz converter gas) that contain hydrogen. In 2004, byproduct gases of the iron industry contained 355,000 ton of hydrogen.

The Characterization of Woodchip Torrefaction and Byproduct Gas (우드칩 반탄화와 부생가스의 특성 분석)

  • Kang, Ku;Wang, Long;Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.55-62
    • /
    • 2014
  • Torrefaction is considered as a promising pre-treatment for thermochemical utilization of biomass. Torrefaction temperature and time are the critical operation parameters. In this study, investigated were the effects of reaction temperature and time on product composition of torrefaction. scanning electron microscope (SEM) images and thermo gravimetric analyzer (TGA) results were also compared for the effects of the operating parameters. SEM images showed that the pores were observed at the temperature of $250^{\circ}C$ for 30 minutes. Rapid decreases in weight were observed the temperature between 200 and$400^{\circ}C$. Higher heating value of the torrefied biomass was over 5,000 kcal/kg at the temperature of $250^{\circ}C$ for 45 minutes. Energy density, which is defined as the ratio of the energy yield over the mass yield was 1.36 at the temperature of $250^{\circ}C$ for 45 minutes. The energy density was higher up to 1.6 at the temperature of $280^{\circ}C$, which indicates greater loss in mass. The major components of the gas produced in the torrefaction were $CO_2$ and CO, with traces of methane. The total amount of gas was 31.54 l/kg and the calorific value of the gas was $1,164.4Kcal/Nm^3$ at the temperature of $250^{\circ}C$ for 30 minute reaction time. Based on the results of this study, the temperature of effective torrefaction is about $250^{\circ}C$ for 30 to 45 minutes of reaction time. Considering the heating value, it is desirable to utilize the gas for efficient process of torrefaction.

THERMAL PLASMA DECOMPOSITION OF FLUORINATED GREENHOUSE GASES

  • Choi, Soo-Seok;Park, Dong-Wha;Watanabe, Takyuki
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.21-32
    • /
    • 2012
  • Fluorinated compounds mainly used in the semiconductor industry are potent greenhouse gases. Recently, thermal plasma gas scrubbers have been gradually replacing conventional burn-wet type gas scrubbers which are based on the combustion of fossil fuels because high conversion efficiency and control of byproduct generation are achievable in chemically reactive high temperature thermal plasma. Chemical equilibrium composition at high temperature and numerical analysis on a complex thermal flow in the thermal plasma decomposition system are used to predict the process of thermal decomposition of fluorinated gas. In order to increase economic feasibility of the thermal plasma decomposition process, increase of thermal efficiency of the plasma torch and enhancement of gas mixing between the thermal plasma jet and waste gas are discussed. In addition, noble thermal plasma systems to be applied in the thermal plasma gas treatment are introduced in the present paper.

Applications of Sugarcane by-products to mitigate climate change in Ethiopia

  • Habte, Lulit;Mulatu, Dure;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.3
    • /
    • pp.36-40
    • /
    • 2018
  • Climate change is one of the major issues in both the developed and developing world. Greenhouse gas (GHG) emission is one of the implications for climate change. It is increasing rapidly. Although the emission is much less when compared to the rest of the world, Ethiopia has also faced this global issue. The major source for GHG emission in Ethiopia is agriculture. Therefore, the agriculture sector has to be given more attention in Ethiopia. To overcome the problem, Climate-Resilient Green Economy (CRGE) strategy has been initiated. One way of executing this target is to create a sustainable and environmentally friendly pathway to use agricultural byproducts. Sugarcane is one of the major plants in Ethiopia. Its byproducts are bagasse, molasses, and press mud. Since it is a waste product, it is economical and creates a sustainable and green environment by reducing GHG emissions. Sugarcane byproducts have versatile applications like as fuel, as cement replacing material, as a mitigation for expansive soils, as biosorbent for the treatment of water and wastewater and also as a wood material. However, Ethiopia has not used this byproduct massively as it is readily available. This paper reviews the possible applications of sugarcane byproducts to mitigate climate change.

Development of a Biogas Engine for Cogeneration System (바이오스가스를 이용한 열병합 발전용 엔진 개발)

  • Kim, Yeong-Min;Lee, Jang-Hui;Ju, Seong-Ho
    • 연구논문집
    • /
    • s.30
    • /
    • pp.33-42
    • /
    • 2000
  • We must stabilize quickly increasing waste matters in urban life and livestock industry. Biogas including landfill gas and digester gas is byproduct of anaerobic decomposition of organic waste matter and contains 40%-70% methane, which can be used for energy purposes. Utilization of biogas reduce the emission of methane into the atmosphere to minimize greenhouse effect and the carbon dioxide (CO2) emitted when biogas is converted to energy has been taken out of the atmosphere by growing plant. Recently, bioenergy is world-widely noticeable as all contributing to the greenhouse effect. This paper presents development process of a biogas engine for cogeneration system and results of application to digester gas and landfill gas in site. The biogas engine is a dual fuel engine operated on biogas with a diesel pilot. At present, the engine can substitute biogas for diesel fuel up to 85%. but it can be said that there is a possibility of improvement in performance.

  • PDF

Dry Shrinkage Characteristic according to the Ternary System Inorganic Binder Panel Size (3성분계 무기결합재 패널크기에 따른 건조수축 특성)

  • Lee, Jin-Woo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.144-145
    • /
    • 2014
  • In the cement,that is the main materials of the panel, as to the cofired process, more than 1,300 enormous energies is consumed, in addition the greenhouse gas generated in the process of producing the cement occupies 6.3% of the country whole emission quantity. And the carbon dioxide of about 0.8 ton is the cement ejected in 1 production. Accordingly, the panel utilizing the industrial byproduct is developed. Accordingly, this research is the experiment which makes the individual size into the environment-friendly inorganic binder panel and by using the blast furnace slag, which is the industrial byproduct with the cement substitute material red mud, silica fume, and etc. looks at the dry shrinkage. The length variation in which the panel which is 450 with the dry shrinkage result of measurement, thickness 12mm, and size 450mm is the smallest was shown.

  • PDF

Naturally Derived Probiotic Supplementation Effects on Physiological Properties and Manure Gas Emission of Broiler Chickens

  • Hassan, Md R.;Ryu, Kyeong-Sun
    • Journal of agriculture & life science
    • /
    • v.46 no.4
    • /
    • pp.119-127
    • /
    • 2012
  • To investigate the influence of multi-probiotic, fermented ginseng byproduct and fermented sulfone on the performance, intestinal microflora and immunity of broiler, a five weeks trial was conducted with 340, 1-d-old $Ross{\times}Ross$ broiler. All broilers were divided into five different groups having 68 birds in each treatment, and they were assigned as control, antibiotic avilamycin (AB), multi-probiotic (MP), fermented sulfone (FS) and fermented ginseng byproduct (FGB). Each artificial or naturally derived probiotic was inoculated 0.1% level with the basal diet, and all diets were provided to birds for five weeks. Weight gain and feed intake were measured weekly basis, and blood, spleen and feces were collectedand used for the physiological properties of broiler chickens. All performances and cholesterol profiles were not significantly differed but numerically lower level of neutral fat and LDL was found in multi-probiotics and FGB treatments respectively. The salmonella spp and E. coli numbers in the ileum were high in control in relation to those of other treatments and were significantly decreased in antibiotics treatments (p<0.05). In addition, Lactobacillus spp. showed significantly higher proliferation in MP as compared to that of others (p<0.05). Fecal ammonia and $CO_2$ gas emission was significantly decreased in MP, FGB and FS, respectively (p<0.05), but significantly increased proliferation of spleen was determined in MP group in comparison of other treatments (p<0.05). Therefore, the results indicates that multi-probiotics would be valuable feed additives to improve the salmonella, E. coli and Lactobacillus proliferation, and manure gas emission of broiler chickens, but further study related to the production of manure gas emission of MP is necessary.

Encapsulation of Semiconductor Gas Sensors with Gas Barrier Films for USN Application

  • Lee, Hyung-Kun;Yang, Woo Seok;Choi, Nak-Jin;Moon, Seung Eon
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.713-718
    • /
    • 2012
  • Sensor nodes in ubiquitous sensor networks require autonomous replacement of deteriorated gas sensors with reserved sensors, which has led us to develop an encapsulation technique to avoid poisoning the reserved sensors and an autonomous activation technique to replace a deteriorated sensor with a reserved sensor. Encapsulations of $In_2O_3$ nanoparticles with poly(ethylene-co-vinyl alcohol) (EVOH) or polyvinylidene difluoride (PVDF) as gas barrier layers are reported. The EVOH or PVDF films are used for an encapsulation of $In_2O_3$ as a sensing material and are effective in blocking $In_2O_3$ from contacting formaldehyde (HCHO) gas. The activation process of $In_2O_3$ by removing the EVOH through heating is effective. However, the thermal decomposition of the PVDF affects the property of the $In_2O_3$ in terms of the gas reactivity. The response of the sensor to HCHO gas after removing the EVOH is 26%, which is not significantly different with the response of 28% in a reference sample that was not treated at all. We believe that the selection of gas barrier materials for the encapsulation and activation of $In_2O_3$ should be considered because of the ill effect the byproduct of thermal decomposition has on the sensing materials and other thermal properties of the barrier materials.